Tag Archives: Empirical Agent-Based Modelling

Delusional Generality – how models can give a false impression of their applicability even when they lack any empirical foundation

By Bruce Edmonds1, Dino Carpentras2, Nick Roxburgh3, Edmund Chattoe-Brown4 and Gary Polhill3

  1. Centre for Policy Modelling, Manchester Metropolitan University
  2. Computational Social Science, ETH Zurich
  3. James Hutton Institute, Aberdeen
  4. University of Leicester

“Hamlet: Do you see yonder cloud that’s almost in shape of a camel?
Polonius: By the mass, and ‘tis like a camel, indeed.
Hamlet: Methinks it is like a weasel.
Polonius: It is backed like a weasel.
Hamlet: Or like a whale?
Polonius: Very like a whale.

Models and Generality

The essence of a model is that it represents – if it is not a model of something it is not a model at all (Zeigler 1976, Wartofsky 1979). A random bit of code or set of equations is not a model. The point of a model is that one can use the model to infer or understand some aspects about what it represents. However, models can represent a variety of kinds of things in a variety of ways (Edmonds & al. 2019) – it can represent ideas, correspond to data, or aspects of other models and it can represent each of these in either a vague or precise manner. To completely understand a model – its construction, properties and working – one needs to understand how it does this mapping. This piece focuses attention on this mapping, rather than the internal construction of models.

What a model reliably represents may be a single observed situation, but it might satisfactorily represent more than one such situation. The range of situations that the model satisfactorily represents is called the “scope” of the model (what is “satisfactory” depending on the purpose for which the model is being used). The more extensive the scope, the more “general” we say the model is. A model that only represents one case has no generality at all and may be more in the nature of a description.

There is a hunger for general accounts of social phenomena (let us call these ‘theories’). However, this hunger is often frustrated by the sheer complexity and ‘messiness’ involved in such phenomena. If every situation we observe is essentially different, then no such theory is possible. However, we hope that this is not the case for the social world and, indeed, informal observation suggests that there is, at least some, commonality between situations – in other words, that some kind of reliable generalisation about social phenomena might be achievable, however modest (Merton 1968). This piece looks at two kinds of applicability – analogical applicability and empirical applicability – and critiques those that conflate them. Although the expertise of the authors is in the agent-based modelling of social phenomena, and so we restrict our discussion to this, we strongly suspect that our arguments are true for many kinds of modelling across a range of domains.

In the next sections we contrast two uses for models: as analogies (ways of thinking about observed systems) and those that intend to represent empirical data in a more precise way. There are, of course, other uses of model such as that of exploring theory which have nothing to do with anything observed.

Models used as analogies

Analogical applicability comes from the flexibility of the human mind in interpreting accounts in terms of the different situations. When we encounter a new situation, the account is mapped onto it – the account being used as an analogy for understanding this situation. Such accounts are typically in the form of a narrative, but a model can also be used as an analogy (which is the case we are concerned with here). The flexibility with which this mapping can be constructed means that such an account can be related to a wide range of phenomena. Such analogical mapping can lead to an impression that the account has a wide range of applicability. Analogies are a powerful tool for thinking since it may give us some insights into otherwise novel situations. There are arguments that analogical thinking is a fundamental aspect of human thought (Hofstadter 1995) and language (Lakoff 2008). We can construct and use analogical mappings so effortlessly that they seem natural to us. The key thing about analogical thinking is that the mapping from the analogy to the situation to which it is applied is re-invented each time – there is no fixed relationship between the analogy and what it might be applied to. We are so good at doing this that we may not be aware of how different the constructed mapping is each time. However, its flexibility comes at a cost, namely that because there is no well-defined relationship with what it applies to, the mapping tends to be more intuitive than precise. An analogy can give insights but analogical reasoning suggests rather than establishes anything reliably and you cannot empirically test it (since analogical mappings can be adjusted to avoid falsification). Such “ways of thinking” might be helpful, but equally might be misleading [note ‎1].

Just because the content of an analogy might be expressed formally does not change any of this (Edmonds 2018), in fact formally expressed analogies might give the impression of being applicable, but often are only related to anything observed via ideas – the model relates to some ideas, and the ideas relate to reality (Edmonds 2000). Using models as analogies is a valid use of models but this is not an empirically reliable one (Edmonds et al. 2019). Arnold (2013) makes a powerful argument that many of the more abstract simulation models are of this variety and simply not relatable to empirically observed cases and data at all – although these give the illusion of wide applicability, that applicability is not empirical. In physics the ways of thinking about atomic or subatomic entities have changed over time whilst the mathematically-expressed, empirically-relevant models have not (Hartman 1997). Although Thompson (2022) concentrates on mathematically formulated models, she also distinguishes between well-validated empirical models and those that just encapsulate the expertise/opinion of the modeller. She gives some detailed examples of where the latter kind had disproportionate influence, beyond that of other expertise, just because it was in the form of a model (e.g. the economic impact of climate change).

An example of an analogical model is described in Axelrod (1984) – a formalised tournament where algorithmically-expressed strategies are pitted against each other, playing the iterated prisoner’s dilemma game. It is shown how the ‘tit for tat’ strategy can survive against many other mixes of strategies (static or evolving).  In the book, the purpose of the model is to suggest a new way of thinking about the evolution of cooperation. The book claims the idea ‘explains’ many observed phenomena, but this in an analogical manner – no precise relationship with any observed measurements is described. There is no validation of the model here or in the more academic paper that described these results (Axelrod & Hamilton 1981).

Of course, researchers do not usually call their models “analogies” or “analogical” explicitly but tend to use other phrasings that imply a greater importance. An exception is Epstein (2008) where it is explicitly listed as one of the 15 modelling purposes, other than prediction, that he discusses. Here he says such models are “…more than beautiful testaments to the unifying power of models: they are headlights in dark unexplored territory.” (ibid.) thus suggesting their use in thinking about phenomena where we do not already have reliable empirical models. Anything that helps us think about such phenomena could be useful, but that does not mean they are at all reliable. As Herbert Simon said: “Metaphor and analogy can be helpful, or they can be misleading. ” (Simon 1968, p. 467).

Another purpose listed in Epstein (2008) is to “Illuminate core dynamics”. After raising the old chestnut that “All models are wrong”, he goes on to justify them on the grounds that “…they capture qualitative behaviors of overarching interest”. This is fine if the models are, in fact, known to be useful as more than vague analogies [Note 2] – that they do, in some sense, approximate observed phenomena – but this is not the case with novel models that have not been empirically tested. This phrase is more insidious, because it implies that the dynamics that have been illuminated by the model are “core” – some kind of approximation of what is important about the phenomena, allowing for future elaborations to refine the representation. This implies a process where an initially rough idea is iteratively improved. However, this is premature because we do not know if what has been abstracted away in the abstract model was essential to the dynamics of the target phenomena or not without empirical testing – this is just assumed or asserted based on the intuitions of the modeller.

This idea of the “core dynamics” leads to some paradoxical situations – where a set of competing models are all deemed to be core. Indeed, the literature has shown how the same phenomenon can be modelled in many contrasting ways. For instance, political polarisation has been modelled through models with mechanisms for repulsion, bounded confidence, reinforcement, or even just random fluctuations, to name a few (Flache et al., 2017; Banisch & Olbrich 2019; Carpentras et al. 2022). However, it is likely that only a few of them contribute substantially to the political polarisation we observe in the real world, and so that all the others are not a real “core dynamic” but until we have more empirical work we do not know which are core and which not.

A related problem with analogical models is that, even when relying on parsimony principles [Note 3], it is not possible to decide which model is better. This aspect, combined with the constant production of new models, can makes the relevant literature increasingly difficult to navigate as models proliferate without any empirical selection, especially for researchers new to ABM. Furthermore, most analogical models define their object of study in an imprecise manner so that it is hard to evaluate whether they are even intended to capture element of any particular observed situation. For example, opinion dynamics models rarely define the type of interaction they represent (e.g. in person vs online) or even what an opinion is. This has led to cases where even knowledge of facts has been studied as “opinions” (e.g. Chacoma & Zanette, 2015).

In summary, analogical models can be a useful tool to start thinking about complex phenomena. However, the danger with them is that they give an impression of progress but result in more confusion than clarity, possibly slowing down scientific progress. Once one has some possible insights, one needs to confront these with empirical data to determine which are worth further investigation.

Models that relate directly to empirical data

An empirical model, in contrast, has a well-defined way of mapping to the phenomena it represents. For example, the variables of the gas laws (volume, temperature and pressure) are measured using standard methods developed over a long period of time, one does not invent a new way of doing this each time the laws are applied. In this case, the ways of measuring these properties have developed alongside the mathematical models of the laws so that these work reliably under broad (and well known) conditions and cannot be adjusted at the whim of a modeller. Empirical generality comes from when a model applies reliably to many different situations – in the case of the gas laws, to a wide range of materials in gaseous form to a high degree of accuracy.

Empirical models can be used for different purposes, including: prediction, explanation and description (Edmonds et al. 2019). Each of these uses how the model is mapped to empirical data in different ways, to reflect these purposes. With a descriptive model the mapping is one-way from empirical data to the model to justify the different parts. In a predictive model, the initial model setup is determined from known data and the model is then run to get its results. These results are then mapped back to what we might expect as a prediction, which can be later compared to empirically measured values to check the model’s validity. An explanatory model supports a complex explanation of some known outcomes in terms of a set of processes, structures and parameter values. When it is shown that the outcomes of such a model sufficiently match those from the observed data – the model represents a complex chain of causation that would result in that data in terms of the processes, structures and parameter values it comprised. It thus supports an explanation in terms of the model and its input of what was observed. In each of these three cases the mapping from empirical data to the model happens in a different order and maybe in a different direction, however they all depend upon the mapping being well defined.

Cartwright (1983), studying how physics works, distinguished between explanatory and phenomenological laws – the former explains but does not necessary relate exactly to empirical data (such as when we fit a line to data using regression), whilst the latter fits the data but does not necessarily explain (like the gas laws). Thus the jobs of theoretical explanation and empirical prediction are done by different models or theories (often calling the explanatory version “theory” and the empirical versions “models”). However, in physics the relationship between the two is, itself, examined so that the “bridging laws” between them are well understood, especially in formal terms. In this case, we attribute reliable empirical meaning to the explanatory theories to the extent that the connection to the data is precise, even though it is done via the intermediary of an “phenomenological” model because both mappings (explanatory↔phenomenological and phenomenological↔empirical data) are precise and well established. The point is that the total mapping from model or theory to empirical data is not subject to interpretation or post-hoc adjustment to improve its fit.

ABMs are often quite complicated and require many parameters or other initialising input to be specified before they can be run. If some of these are not empirically determinable (even in principle) then these might be guessed at using a process of “calibration”, that is searching the space of possible initialisations for some values for which some measured outcomes of the results match other empirical data. If the model has been separately shown to be empirically reliable then one could do such a calibration to suggest what these input values might have been. Such a process might establish that the model captures a possible explanation of the fitted outcomes (in terms of the model plus those backward-inferred input values), but this is not a very strong relationship, since many models are very flexible and so could fit a wide range of possible outcomes. The reliability of such a suggested explanation, supported by the model, is only relative to (a) the empirical reliability of any theory or other assumptions the model is built upon (b) how flexibly the model outcomes can be adjusted to fit the target data and (c) how precisely the choice of outcome measures and fit are. Thus, calibration does not provide strong evidence of the empirical adequacy of an ABM and any explanation supported by such a procedure is only relative to the ‘wiggle room’ afforded by free parameters and unknown input data as well as any assumptions used in the making of the model. However, empirical calibration is better than none and may empirically fix the context in which theoretical exploration occurs – showing that the model is, at least, potentially applicable to the case being considered [Note 4].

An example of a model that is strongly grounded in empirical data is the “538” model of the US electoral college for presidential elections (Silver 2012). This is not an ABM but more like a micro-simulation. It aggregates the uncertainty from polling data to make probabilistic predictions about what this means for the outcomes. The structure of the model comes directly from the rules of the electoral college, the inputs are directly derived from the polling data and it makes predictions about the results that can be independently checked. It does a very specific, but useful job, in translating the uncertainty of the polling data into the uncertainty about the outcome.

Why this matters

If people did not confuse the analogical and empirical cases, there would not be a problem. However, researchers seem to suffer from a variety of “Kuhnian Spectacles” (Kuhn 1962) – namely that because they view their target systems through an analogical model, they tend to think that this is how that system actually is – i.e. that the model has not just analogical but also empirical applicability. This is understandable, we use many layers of analogy to navigate our world and in many every-day cases it is practical to conflate our models with the reality we deal with (when they are very reliable). However, people who claim to be scientists are under an obligation to be more cautious and precise than this, since others might wish to rely upon our theories and models (this is, after all, why they support us in our privileged position). However, such caution is not always followed. There are cases where modellers declare their enterprise a success even after a long period without any empirical backing, making a variety of excuses instead of coming clean about this lack (Arnold 2015).

Another fundamental aspect is that agent-based models can be very interdisciplinary and, because of that, they can be used also by researchers in different fields. However, many fields do not consider models as simple analogies, especially when they provide precise mathematical relationship among variables. This can easily result in confusions where the analogical applicability of ABMs is interpreted as empirical in another field.

Of course, we may be hopeful that, sometime in the future, our vague or abstract analogical model maybe developed into something with proven empirical abilities, but we should not suggest such empirical abilities until these have been established. Furthermore, we should be particularly careful to ensure that non-modellers understand that this possibility is only a hope and not imply anything otherwise (e.g. imply that it is likely to have empirical validity). However, we suspect that in many cases this confusion goes beyond optimistic anticipation and that some modellers conflate analogical with empirical applicability, assuming that their model is basically right just because it seems that way to them. This is what we call “delusional generality” – that a researcher is under the impression that their model has a wide applicability (or potentially wide applicability) due to the attractiveness of the analogy it presents. In other words, unaware of the unconscious process of re-inventing the mapping to each target system, they imagine (without further justification) that it has some reliable empirical (or potentially empirical) generality at its core [Note 5].

Such confusion can have severe real-world consequences if a model with only analogical validity is assumed to also have some empirical reliability. Thompson (2022) discusses how abstract economic models of the cost of future climate change did affect the debate about the need for prevention and mitigation, even though they had no empirical validity. However, agent-based modellers have also made the same mistake, with a slew of completely unvalidated models about COVID affecting public debate about policy (Squazzoni et al 2021).

Conclusion

All of the above discussion raises the question of how we might achieve reliable models with even a moderate level of empirical generality in the social sciences. This is a tricky question of scientific strategy, which we are not going to answer here [Note 6]. However, we question whether the approach of making “heroic” jumps from phenomena to abstract non-empirical models on the sole basis of its plausibility to its authors will be a productive route when the target is complex phenomena, such as socio-cognitive systems (Dignum, Edmonds and Carpentras 2022). Certainly, that route has not yet been empirically demonstrated.

Whatever the best strategy is, there is a lot of theoretical modelling in the field of social simulation that assumes or implies that it is the precursor for empirical applicability and not a lot of critique about the extent of empirical success achieved. The assumption seems to be that abstract theory is the way to make progress understanding social phenomena but, as we argue here, this is largely wishful thinking – the hope that such models will turn out to have empirical generality being a delusion.  Furthermore, this approach has substantive deleterious effects in terms of encouraging an explosion of analogical models without any process of selection (Edmonds 2010). It seems that the ‘famine’ of theory about social phenomena with any significant level of generality is so severe, that many seem to give credence to models they might otherwise reject – constructing their understanding using models built on sand.

Notes

1. There is some debate about the extent to which analogical reasoning works, what kind of insights it results in and under what circumstances (Hofstede 1995). However, all we need for our purposes is that: (a) it does not reliably produce knowledge, (b) the human mind is exceptionally good at ‘fitting’ analogies to new situations (adjusting the mapping to make it ‘work’ somehow) and (c) due to this ability analogies can be far more convincing that the analogical reasoning warrants.

2. In pattern-oriented modelling (Grimm & al 2005) models are related to empirical evidence in a qualitative (pattern-based) manner, for example to some properties of a distribution of numeric outcomes. In this kind of modelling, a precise numerical correspondence is replaced by a set of qualitative correspondences in many different dimensions. In this the empirical relevance of a model is established on the basis that it is too hard to simultaneously fit a model to evidence in this way, thus ruling that out as a source of its correspondence with that evidence.

3. So-called “parsimony principles” are a very unreliable manner of evaluating competing theories on grounds other than convenience or that of using limited data to justify the values of parameters (Edmonds 2007).

4. In many models a vague argument for its plausibility is often all that is described to show that it is applicable to the cases being discussed. At least calibration demonstrates its empirical applicability, rather than simply assuming it.

5. We are applying the principle of charity here, assuming that such conflations are innocent and not deliberate. However, there is increasing pressure from funding agencies to demonstrate ‘real life relevance’ so some of these apparent confusions might be more like ‘spin’ – trying to give an impression of empirical relevance even when this is merely an aspiration, in order to suggest that their model has more significant than they have reliably established.

6. This has been discussed elsewhere, e.g. (Moss & Edmonds 2005).

Acknowledgements

Thanks to all those we have discussed these issues with, including Scott Moss (who was talking about these kinds of issue more than 30 years ago), Eckhart Arnold (who made many useful comments and whose careful examination of the lack of empirical success of some families of model demonstrates our mostly abstract arguments), Sven Banisch and other members of the ESSA special interest group on “Strongly Empirical Modelling”.

References

Arnold, E. (2013). Simulation models of the evolution of cooperation as proofs of logical possibilities. How useful are they? Ethics & Politics, XV(2), pp. 101-138. https://philpapers.org/archive/ARNSMO.pdf

Arnold, E. (2015) How Models Fail – A Critical Look at the History of Computer Simulations of the Evolution of Cooperation. In Misselhorn, C. (Ed.): Collective Agency and Cooperation in Natural and Artificial Systems. Explanation, Implementation and Simulation, Philosophical Studies Series, Springer, pp. 261-279. https://eckhartarnold.de/papers/2015_How_Models_Fail

Axelrod, R. (1984) The Evolution of Cooperation, Basic Books.

Axelrod, R.  & Hamilton, W.D. (1981) The evolution of cooperation. Science, 211, 1390-1396. https://www.science.org/doi/abs/10.1126/science.7466396

Banisch, S., & Olbrich, E. (2019). Opinion polarization by learning from social feedback. The Journal of Mathematical Sociology, 43(2), 76-103. https://doi.org/10.1080/0022250X.2018.1517761

Carpentras, D., Maher, P. J., O’Reilly, C., & Quayle, M. (2022). Deriving An Opinion Dynamics Model From Experimental Data. Journal of Artificial Societies & Social Simulation, 25(4).http://doi.org/10.18564/jasss.4947

Cartwright, N. (1983) How the Laws of Physics Lie. Oxford University Press.

Chacoma, A. & Zanette, D. H. (2015). Opinion formation by social influence: From experiments to modelling. PloS ONE, 10(10), e0140406.https://doi.org/10.1371/journal.pone.0140406

Dignum, F., Edmonds, B. and Carpentras, D. (2022) Socio-Cognitive Systems – A Position Statement. Review of Artificial Societies and Social Simulation, 2nd Apr 2022. https://rofasss.org/2022/04/02/scs

Edmonds, B. (2000). The Use of Models – making MABS actually work. In. S. Moss and P. Davidsson. Multi Agent Based Simulation. Berlin, Springer-Verlag. 1979: 15-32. http://doi.org/10.1007/3-540-44561-7_2

Edmonds, B. (2007) Simplicity is Not Truth-Indicative. In Gershenson, C.et al. (eds.) Philosophy and Complexity. World Scientific, pp. 65-80.

Edmonds, B. (2010) Bootstrapping Knowledge About Social Phenomena Using Simulation Models. Journal of Artificial Societies and Social Simulation, 13(1), 8. http://doi.org/10.18564/jasss.1523

Edmonds, B. (2018) The “formalist fallacy”. Review of Artificial Societies and Social Simulation, 11th June 2018. https://rofasss.org/2018/07/20/be/

Edmonds, B., le Page, C., Bithell, M., Chattoe-Brown, E., Grimm, V., Meyer, R., Montañola-Sales, C., Ormerod, P., Root H. & Squazzoni. F. (2019) Different Modelling Purposes. Journal of Artificial Societies and Social Simulation, 22(3):6. http://doi.org/10.18564/jasss.3993

Epstein, J. M. (2008). Why Model?. Journal of Artificial Societies and Social Simulation, 11(4),12. https://www.jasss.org/11/4/12.html

Flache, A., Mäs, M., Feliciani, T., Chattoe-Brown, E., Deffuant, G., Huet, S. & Lorenz, J. (2017). Models of social influence: Towards the next frontiers. Journal of Artificial Societies and Social Simulation, 20(4), 2. http://doi.org/10.18564/jasss.4298

Grimm, V., Revilla, E., Berger, U., Jeltsch, F., Mooij, W.M., Railsback, S.F., et al. (2005). Pattern-oriented modeling of agent-based complex systems: lessons from ecology. Science, 310 (5750), 987–991. https://www.jstor.org/stable/3842807

Hartman, S. (1997) Modelling and the Aims of Science. 20th International Wittgenstein Symposium, Kirchberg am Weshsel.

Hofstadter, D. (1995) Fluid Concepts and Creative Analogies. Basic Books.

Kuhn, T. S. (1962). The structure of scientific revolutions. University of Chicago Press.

Lakoff, G. (2008). Women, fire, and dangerous things: What categories reveal about the mind. University of Chicago Press.

Merton, R.K. (1968). On the Sociological Theories of the Middle Range. In Classical Sociological Theory, Calhoun, C., Gerteis, J., Moody, J., Pfaff, S. and Virk, I. (Eds), Blackwell, pp. 449–459.

Meyer, R. & Edmonds, B. (2023). The Importance of Dynamic Networks Within a Model of Politics. In: Squazzoni, F. (eds) Advances in Social Simulation. ESSA 2022. Springer Proceedings in Complexity. Springer. (Earlier, open access, version at: https://cfpm.org/discussionpapers/292)

Moss, S. and Edmonds, B. (2005). Towards Good Social Science. Journal of Artificial Societies and Social Simulation, 8(4), 13. https://www.jasss.org/8/4/13.html

Squazzoni, F. et al. (2020) ‘Computational Models That Matter During a Global Pandemic Outbreak: A Call to Action’ Journal of Artificial Societies and Social Simulation 23(2):10. http://doi.org/10.18564/jasss.4298

Silver, N, (2012) The Signal and the Noise: Why So Many Predictions Fail – But Some Don’t. Penguin.

Simon, H. A. (1962). The architecture of complexity. Proceedings of the American philosophical society, 106(6), 467-482.https://www.jstor.org/stable/985254

Thompson, E. (2022). Escape from Model Land: How mathematical models can lead us astray and what we can do about it. Basic Books.

Wartofsky, M. W. (1979). The model muddle: Proposals for an immodest realism. In Models (pp. 1-11). Springer, Dordrecht.

Zeigler, B. P. (1976). Theory of Modeling and Simulation. Wiley Interscience, New York.


Edmonds, B., Carpentras, D., Roxburgh, N., Chattoe-Brown, E. and Polhill, G. (2024) Delusional Generality – how models can give a false impression of their applicability even when they lack any empirical foundation. Review of Artificial Societies and Social Simulation, 7 May 2024. https://rofasss.org/2024/05/06/delusional-generality


© The authors under the Creative Commons’ Attribution-NoDerivs (CC BY-ND) Licence (v4.0)

Why we are failing at connecting opinion dynamics to the empirical world

By Dino Carpentras

ETH Zürich – Department of Humanities, Social and Political Sciences (GESS)

The big mystery

Opinion dynamics (OD) is field dedicated to studying the dynamic evolution of opinions and is currently facing some extremely cryptic mysteries. Since 2009 there have been multiple calls for OD models to be strongly grounded in empirical data (Castellano et al., 2009, Valori et al., 2012, Flache et al., 2017; Dong et al., 2018), however the number of articles moving in this direction is still extremely limited. This is especially puzzling when compared with the increase in the number of publications in this field (see Fig 1). Another surprising issue, which extends also beyond OD, is that validated models are not cited as often as we would expect them to be (Chattoe-Brown, 2022; Kejjzer, 2022).

Some may argue that this could be explained by a general lack of people interested in the empirical side of opinion dynamics. However, the World seems in desperate need of empirically grounded OD models that could help us in shape policies on topics such as vaccination and climate change. Thus, it is very surprising to see that almost nobody is interested in meeting such a big and pressing demand.

In this short piece, I will share my experience both as a writer and as a reviewer for empirical OD papers, as well as the information I gathered from discussions with other researchers in similar roles. This will help us understand much better what is going on in the world of empirical OD and, more in general, in the empirical parts of agent-based modelling (ABM) related to psychological phenomena.

fig 1 rofasss

Publications containing the term “opinion dynamics” in abstract or title. Total 2,527. Obtained from dimensions.ai

Theoretical versus empirical OD

The main issue I have noticed with works in empirical OD is that these papers do not conform to the standard framework of ABM papers. Indeed, in “classical” ABM we usually try to address research questions like:

  1. Can we develop a toy model to show how variables X and Y are linked?
  2. Can we explain some macroscopic phenomenon as the result of agents’ interaction?
  3. What happens to the outputs of a popular model if we add a new variable?

However, empirical papers do not fit into this framework. Indeed, empirical ABM papers ask questions such as:

  1. How accurate are the predictions made by a certain model when compared with data?
  2. How close is the micro-dynamic to the experimental data?
  3. How can we refine previous models to improve their predicting ability?

Unfortunately, many reviewers do not view the latter questions as genuine research inquiries, ending up in pushing the authors to modify their papers to meet the first set of questions.

For instance, my empirical works often receive the critique that “the research question is not clear”, even though the question was explicitly stated in the main text, abstract and even in the title (See, for example “Deriving An Opinion Dynamics Model From Experimental Data”, Carpentras et al. 2022). Similarly, once a reviewer acknowledged that the experiment presented in the paper was an interesting addition to it, but they requested me to demonstrate why it was useful. Notice that, also in this case, the paper was on developing a model from the dynamical behavior observed in an experiment; therefore, the experiment was not just “an add on”, but core of the paper. I also have reviewed some empirical OD papers where the authors are asked, by other reviewers, to showcase how their model informs us about the world in a novel way.

As we will see in a moment, this approach does not just make authors’ life harder, but it also generates a cascade of consequences on the entire field of opinion dynamics. But to better understand our world, let us move first to a fictitious scenario.

A quick tale of natural selection of researcher

Let us now imagine a hypothetical world where people have almost no knowledge of the principles of physics. However, to keep the thought experiment simple, let us also suppose they have already developed the peer-review process. Of course, this fictious scenario is far from being realistic, but it should still help us understand what is going on with empirical OD.

In this world, a scientist named Alice writes a paper suggesting that there is an upward force when objects enter water. She also shows that many objects can float on water, therefore “validating” her model. The community is excited about this new paper which took Alice 6 months to write.

Now, consider another scientist named Bob. Bob, inspired by Alice’s paper, in 6 months conducts a series of experiments demonstrating that when an object is submerged in water, it experiences an upward force that is proportional to its submerged volume. This pushes knowledge forward as Bob does not just claim that this force exists, but he shows how this force has some clear quantitative relationship to the volume of the object.

However, when reviewers read Bob’s work, they are unimpressed. They question the novelty of his research and fail to see the specific research question he is attempting to address. After all, Alice already showed that this force exists, so what is new in this paper? One of the reviewers suggests that Bob should show how his study may impact their understanding of the world.

As a result, Bob spends an additional six months to demonstrate that he could technically design a floating object made out of metal (i.e. a ship). He also describes the advantages for society if such an object was invented. Unfortunately, one of the reviewers is extremely skeptical as metal is known to be extremely heavy and should not float in water, and requests additional proof.

After multiple revisions, Bob’s work is eventually published. However, the publication process takes significantly longer than Alice’s work, and the final version of the paper addresses a variety of points, including empirical validation, the feasibility of constructing a metal boat, and evidence to support this claim. Consequently, the paper becomes densely technical, making it challenging for most people to read and understand.

At the end, Bob is left with a single paper which is hardly readable (and therefore citable), while Alice, in the meanwhile, published many other easier-to-read papers having a much bigger impact.

Solving the mystery of empirical opinion dynamics

The previous sections helped us in understanding the following points: (1) validation and empirical grounding are often not seen as a legitimate research goal by many members of the ABM community. (2) This leads to bigger struggle when trying to publish this kind of research, and (3) reviewers often try to push the paper into the more classic research questions, possibly resulting in a monster-paper which tries to address multiple points all at once. (4) This also generates lower readability and so less impact.

So to sum it up: empirical OD gives you the privilege of working much more to obtain way less. This, combined with the “natural selection” of the “publish or perish” explains the scarcity of publications in this field, as authors need either to adapt to more standard ABM formulas or to “perish.” I also personally know an ex-researcher who tried to publish empirical OD until he got fed up and left the field.

Some clarifications

Let me make clear that this is a bit of a simplification and that, of course, it is definitely possible to publish empirical work in opinion dynamics even without “perishing.” However, choosing this instead of the traditional ABM approach strongly enhances the difficulty. This is a little like running while carrying extra weight: it is still possible that you will win the race, but the weight strongly decreases the probability of this happening.

I also want to say that while here I am offering an explanation of the puzzles I presented, I do not claim that this is the only possible explanation. Indeed, I am sure that what I am offering here is only part of the full story.

Finally, I want to clarify that I do not believe anyone in the system has bad intentions. Indeed, I think reviewers are in good faith when suggesting empirically-oriented papers to take a more classical approach. However, even with good intentions, we are creating a lot of useless obstacles for an entire research field.

Trying to solve the problem

To address this issue, in the past I have suggested dividing ABM researchers into theoretical and empirically oriented (Carpentras, 2020). The division of research into two streams could help us in developing better standards for both developing toy models and for empirical ABMs.

To give you a practical example, my empirical ABM works usually receive long and detailed comments about the model properties and almost no comment on the nature of the experiment or data analysis. Am I that good in these last two steps? Or maybe reviewers in ABM focus very little on the empirical side of empirical ABMs? While the first explanation would be flattering for me, I am afraid that the reality is better depicted by the second option.

With this in mind, together with other members of the community, we have created a special interest group for Experimental ABM (see http://www.essa.eu.org/sig/sig-experimental-abm/). However, for this to be successful, we really need people to recognize the distinction between these two fields. We need to acknowledge that empirically-related research questions are still valid and not push papers towards the more classical approach.

I really believe empirical OD will raise, but how this will happen is still to decide. Will it be at the cost of many researchers facing bigger struggle or will we develop a more fertile environment? Or maybe some researchers will create an entire new niche outside of the ABM community? The choice is up to us!

References

Carpentras, D., Maher, P. J., O’Reilly, C., & Quayle, M. (2022). Deriving An Opinion Dynamics Model From Experimental Data. Journal of Artificial Societies & Social Simulation, 25(4). https://www.jasss.org/25/4/4.html

Carpentras, D. (2020) Challenges and opportunities in expanding ABM to other fields: the example of psychology. Review of Artificial Societies and Social Simulation, 20th December 2021. https://rofasss.org/2021/12/20/challenges/

Castellano, C., Fortunato, S., & Loreto, V. (2009). Statistical physics of social dynamics. Reviews of modern physics, 81(2), 591. DOI: 10.1103/RevModPhys.81.591

Chattoe-Brown, E. (2022). If You Want To Be Cited, Don’t Validate Your Agent-Based Model: A Tentative Hypothesis Badly In Need of Refutation. Review of Artificial Societies and Social Simulation, 1 Feb 2022. https://rofasss.org/2022/02/01/citing-od-models/

Dong, Y., Zhan, M., Kou, G., Ding, Z., & Liang, H. (2018). A survey on the fusion process in opinion dynamics. Information Fusion, 43, 57-65. DOI: 10.1016/j.inffus.2017.11.009

Flache, A., Mäs, M., Feliciani, T., Chattoe-Brown, E., Deffuant, G., Huet, S., & Lorenz, J. (2017). Models of social influence: Towards the next frontiers. Journal of Artificial Societies and Social Simulation, 20(4). https://www.jasss.org/20/4/2.html

Keijzer, M. (2022). If you want to be cited, calibrate your agent-based model: a reply to Chattoe-Brown. Review of Artificial Societies and Social Simulation.  9th Mar 2022. https://rofasss.org/2022/03/09/Keijzer-reply-to-Chattoe-Brown

Valori, L., Picciolo, F., Allansdottir, A., & Garlaschelli, D. (2012). Reconciling long-term cultural diversity and short-term collective social behavior. Proceedings of the National Academy of Sciences, 109(4), 1068-1073. DOI: 10.1073/pnas.1109514109


Carpentras, D. (2023) Why we are failing at connecting opinion dynamics to the empirical world. Review of Artificial Societies and Social Simulation, 8 Mar 2023. https://rofasss.org/2023/03/08/od-emprics


© The authors under the Creative Commons’ Attribution-NoDerivs (CC BY-ND) Licence (v4.0)

Antisocial simulation: using shared high-performance computing clusters to run agent-based models

By Gary Polhill

Information and Computational Sciences Department, The James Hutton Institute, Aberdeen AB15 8QH, UK.

High-performance computing (HPC) clusters are increasingly being used for agent-based modelling (ABM) studies. There are reasons why HPC provides a significant benefit for ABM work, and to expect a growth in HPC/ABM applications:

  1. ABMs typically feature stochasticity, which require multiple runs using the same parameter settings and initial conditions to ascertain the scope of the behaviour of the model. The ODD protocol has stipulated the explicit specification of this since it was first conceived (Grimm et al. 2006). Some regard stochasticity as ‘inelegant’ and to be avoided in models, but asynchrony in agents’ actions can avoid artefacts (results being a ‘special case’ rather than a ‘typical case’) and introduces an extra level of complexity affecting the predictability of the system even when all data are known (Polhill et al. 2021).
  2. ABMs often have high-dimensional parameter spaces, which need to be sampled for sensitivity analyses and, in the case of empirical ABMs, for calibration and validation. The so-called ‘curse of dimensionality’ means that the problem of exploring parameter space grows exponentially with the number of parameters. While ABMs’ parameters may not all be ‘orthogonal’ (i.e. each point in parameter space does not uniquely specify model behaviour – a situation sometimes referred to as ‘equifinality’), diminishing the ‘curse’, the exponential growth means the challenge of parameter search does not need many dimensions before it becomes intractable exhaustively.
  3. Both the above points are exacerbated in empirical applications of ABMs given Sun et al.’s (2016) observations about the ‘medawar zone’ of model complicatedness in relation to that of theoretical models. In empirical applications, we also may be more interested in knowing that an undesirable outcome cannot occur, or has a very low probability of occurring, requiring more runs with the same conditions. Further, the additional complicatedness of empirical ABM will entail more parameters, and the empirical application will place greater emphasis on searching parameter space for calibrating and validating to data.

HPC clusters are shared computing resources, and it is now commonplace for research organizations and universities to have them. There can be few academic disciplines without some sort of scientific computing requirement – typical applications include particle physics, astronomy, meteorology, materials, chemistry, neuroscience, medicine and genetics. And social science. As a shared resource, an HPC cluster is subject to norms and institutions frequently observed in common-pool resource dilemmas. Users of HPC clusters are asked to request allocations of computing time, memory and long-term storage space to accommodate their needs. The requests are made in advance of the runs being executed; sometimes so far in advance that the calculations form part of the research project proposal. Hence, as a user, if you do not know, or cannot calculate, the resources you will require, you have a dilemma: ask for more than it turns out you really need and risk normative sanctions; or ask for less than it turns out you really need and impair the scientific quality of your research. Normative sanctions are in the job description of the HPC cluster administrator. This can lead to emails such as those in Figure 1.

Can I once again remind everyone to please be sensible (and considerate) in your allocation of memory for jobs on the cluster. We now have a situation on the cluster where jobs are unable to run because large amounts of memory have been requested yet only a tiny amount is actually active - check the attached image, where light green shows allocated and dark green shows used. Over allocating resources can block the cluster for others, as well as waste a huge amount of energy as additional machines need to power up unnecessarily. Picture 1b

Figure 1: Example email and accompanying visualization from an HPC cluster administrator reminding users that it is antisocial to request more resources than you will use when submitting jobs.

The ‘managerialist’ turn in academia has been lamented in various articles. Kolsaker (2008), while presenting a nuanced view of the relationship between managerialist and academic modes of working, says that “managerialism represents a distinctive discourse based upon a set of values that justify the assumed right of one group to monitor and control the activities of others.” Steinþórsdóttir et al. (2019) note in the abstract to their article that their results from a case study in Iceland support arguments that managerialism discriminates against women and early-career researchers, in part because of a systemic bias towards natural sciences. Both observations are relevant in this context.

Measurement and control as the tools of managerialist conduct renders Goodhart’s Law (the principle that when a metric becomes a target, the metric is useless) relevant. Goodhart’s Law has been found to have led to bibliometrics now being useless for comparing researchers’ performance – both within and between departments (Fire and Guestrin 2019). We may therefore expect that if an HPC cluster’s administrator has the accurate prediction of computing resource as a target for their own performance assessment, or if they give it as a target for users – e.g. by prioritizing jobs submitted by users on the basis of the accuracy of their predicted resource use, or denying access to those consistently over-estimating requirements – this accuracy will be useless. To give a concrete example, programming languages such as C give the programmer direct control over memory allocation. Hence, were access to an HPC conditional on the accurate prediction of memory allocation requirements, a savvy C programmer would have the (excessive) memory allowance in the batch job submission as a command-line argument to their program, which on execution would immediately request that allocation from the server’s operating system. The rest of the program would use bespoke memory allocation functions that allocated the memory the program actually needed from the memory initially reserved. Similar principles can be used for CPU cycles – if the program runs too quickly, then calculate digits of π until the predicted CPU time has elapsed; and disk space – if too much disk space has been requested, then pad files with random data. These activities waste the programmer’s time, and entail additional use of computing resources with energy cost implications for the cluster administrator.

With respect to the normative statements such as those in Figure 1, Griesemer (2020, p. 77), discussing the use of metrics leading to ‘gaming the system’ in academia generally (the savvy C programmer’s behaviour being an example in the context of HPC usage) claims that “it is … problematic to moralize and shame [such] practices as if it were clear what constitutes ethical … practice in social worlds where Goodhart’s law operates” [emphasis mine]. In computer science, however, there are theoretical (in the mathematical sense of the term) reasons why such norms are problematic over-and-above the social context of measurement-and-control.

The theory of computer science is founded in mathematics and logic, and the work of notable thinkers such as Gödel, Turing, Hilbert, Kolmogorov, Chomsky, Shannon, Tarski, Russell and von Neumann. The growth in areas of computer science (e.g. artificial intelligence, internet-of-things) means that undergraduate degrees have increasingly less space to devote to teaching this theory. Blumenthal (2021, p. 46), comparing computer science curricula in 2014 and 2021, found that the proportion of courses with required modules on computational theory had dropped from 46% to 40%, though the sample size meant this result was not significant (P = 0.09 under a two-population z-test). Similarly, the time dedicated to algorithmics and complexity in CS2013 fell to 28 (of which 19 are ‘tier-1’ – required of every curriculum; and 9 are ‘tier-2’ – in which 80% topic coverage is the stipulated minimum) from 31 in CS2008 (Joint Task Force on Computing Curricula 2013).

One of the most critical theoretical results in computer science is the so-called Halting Problem (Turing 1937), which proves that it is impossible to write a computer program that (in the general case) takes as input another computer program and its input data and gives as output whether the latter program will halt or run forever. The halting problem is ‘tier-1’ in CS2013, and so should be taught to every computer scientist. Rice (1953) generalized Turing’s finding to prove that any ‘non-trivial’ properties of computer programs could not be decided algorithmically. These results mean that the automated job scheduling and resource allocation algorithms in HPC, such as SLURM (Yoo et al. 2003), cannot take a user’s submitted job as input and calculate the computing resources it will need. Any requirement for such prediction is thus pushed to the user. In the general case, this means users of HPC clusters are being asked to solve formally undecidable problems when submitting jobs. Qualified computer scientists should know this – but possibly not all cluster administrators, and certainly not all cluster users, are qualified computer scientists. The power dynamic implied by Kolsaker’s (2008) characterization of a managerialist working culture puts users as a disadvantage, while Steinþórsdóttir et al.’s (2019) observations suggest this practice may be indirectly discriminatory on the basis of age and gender; the latter particularly when social scientists are seeking access to shared HPC facilities.

I emphasized ‘in the general case’ above because in many specific cases, computing resources can be accurately estimated. Sorting a list of strings in alphabetical order, for example is known to grow in execution time with as a function of n log n, where n is the length of the list. Integers can even be sorted in linear time, but with demands on memory that are exponential in the number of bits used to store an integer (Andersson et al. 1998).

However, agent-based modellers should not expect to be so lucky. There are various features that ABMs may implement that make their computing resources difficult (perhaps impossible) to predict:

  • Birth and death of agents can render computing time and memory requirements difficult to predict. Indeed, the size of the population and any fluctuation in it may be the purpose of the simulation study. With each agent having memory needed to store its attributes, and execution time for its behaviour, if the maximum population size of a specific run is not predictable from its initial conditions and parameter settings without first running the model, then computing resources cannot be predicted for HPC job submission.
    • A more dramatic corollary of birth and death is the question of extinction – i.e. where all agents die before they can reproduce. At this point, a run would typically terminate – far sooner than the computing time budgeted.
  • Interactions among agents, where the set of other agents with which one agent interacts is not predetermined, will also typically result in unpredictable computing times, even if the time needed for any one interaction is known. In some cases, agents’ social networks may be formally represented using data structures (‘links’ in NetLogo), and if these connections can be created or destroyed as a result of the model’s dynamics, then the memory requirements will typically be unpredictable.
  • Memories of agents, where implemented, are most trivially stored in lists that may have arbitrary length. The algorithms implementing the agents’ behaviours that use their memories will have computing times that are a function of the list length at any one time. These lists may not have a predictable length (e.g. if the agent ‘forgets’ some memories) and hence their behavioural algorithms won’t have predictable execution time.
  • Gotts and Polhill (2010) have shown that running a specific model with larger spaces led to qualitatively different results than with smaller spaces. This suggests that smaller (personal) computers (such as desktops and laptops) cannot necessarily be used to accurately estimate execution times and memory requirements prior to submitting larger-scale simulations requiring resources only available on HPC clusters.

Worse, a job will typically comprise several runs in a ‘batch’ covering multiple parameter settings and/or initial conditions. Even if the maximum time and memory requirements of any of the runs in a batch were known, there is no guarantee that all of the other runs will use anything like as much. These matters combine to make agent-based modellers ‘antisocial’ users of HPC clusters where the ‘performance’ of the clusters’ users is measured by their ability to accurately predict resource requirements, or there isn’t an ‘accommodating’ relationship between the administrator and researcher. Further, the social environment in which researchers access these resources put early-career and female researchers at a potential systemic disadvantage

The main purpose of making these points is to lay down the foundations for more equitable access to HPC for social scientists, and provide tentative users of these facilities with the arguments they need to develop constructive working arrangements with cluster administrators for them to run their agent-based models on shared HPC equipment.

Acknowledgements

This work was supported by the Scottish Government Rural and Environment Science and Analytical Services Division (project reference JHI-C5-1)

References

Andersson, A., Hagerup, T., Nilsson, S. and Raman, R. (1998) Sorting in linear time? Journal of Computer and System Sciences 57, 74-93. https://doi.org/10.1006/jcss.1998.1580

Blumenthal, R. (2021) Walking the curricular talk: a longitudinal study of computer science departmental course requirements. In Lu, B. and Smallwood, P. (eds.) The Journal of Computing Sciences in Colleges: Papers of the 30th Annual CCSC Rocky Mountain Conference, October 15th-16th, 2021, Utah Valley University (virtual), Orem, UT. Volume 37, Number 2, pp. 40-50.

Fire, M. and Guestrin, C. (2019) Over-optimization of academic publishing metrics: observing Goodhart’s Law in action. GigaScience 8 (6), giz053. https://doi.org/10.1093/gigascience/giz053

Gotts, N. M. and Polhill, J. G. (2010) Size matters: large-scale replications of experiments with FEARLUS. Advances in Complex Systems 13 (4), 453-467. https://doi.org/10.1142/S0219525910002670

Griesemer, J. (2020) Taking Goodhart’s Law meta: gaming, meta-gaming, and hacking academic performance metrics. In Kippmann, A. and Biagioli, M. (eds.) Gaming the Metrics: Misconduct and Manipulation in Academic Research. Cambridge, MA, USA: The MIT Press, pp. 77-87.

Grimm, V., Berger, U., Bastiansen, F., Eliassen, S., Ginot, V., Giske, J., Goss-Custard, J., Grand, T., Heinz, S. K., Huse, G., Huth, A., Jepsen, J. U., Jørgensen, C., Mooij, W. M., Müller, B., Pe’er, G., Piou, C., Railsback, S. F., Robbins, A. M., Robbins, M. M., Rossmanith, E., Rüger, N., Strand, E., Souissi, S., Stillman, R. A., Vabø, R., Visser, U. and DeAngelis, D. L. (2006) A standard protocol for describing individual-based and agent-based models. Ecological Modelling 198, 115-126. https://doi.org/10.1016/j.ecolmodel.2006.04.023

(The) Joint Task Force on Computing Curricula, Association for Computing Machinery (ACM) IEEE Computer Society (2013) Computer Science Curricula 2013: Curriculum Guidelines for Undergraduate Degree Programs in Computer Science. https://doi.org/10.1145/2534860

Kolsaker, A. (2008) Academic professionalism in the managerialist era: a study of English universities. Studies in Higher Education 33 (5), 513-525. https://doi.org/10.1080/03075070802372885

Polhill, J. G., Hare, M., Bauermann, T., Anzola, D., Palmer, E., Salt, D. and Antosz, P. (2021) Using agent-based models for prediction in complex and wicked systems. Journal of Artificial Societies and Social Simulation 24 (3), 2. https://doi.org/10.18564/jasss.4597

Rice, H. G. (1953) Classes of recursively enumerable sets and their decision problems. Transactions of the American Mathematical Society 74, 358-366. https://doi.org/10.1090/S0002-9947-1953-0053041-6

Steinþórsdóttir, F. S., Brorsen Smidt, T., Pétursdóttir, G. M., Einarsdóttir, Þ, and Le Feuvre, N. (2019) New managerialism in the academy: gender bias and precarity. Gender, Work & Organization 26 (2), 124-139. https://doi.org/10.1111/gwao.12286

Sun, Z., Lorscheid, I., Millington, J. D., Lauf, S., Magliocca, N. R., Groeneveld, J., Balbi, S., Nolzen, H., Müller, B., Schulze, J. and Buchmann, C. M. (2016) Simple or complicated agent-based models? A complicated issue. Environmental Modelling & Software 86, 56-67. https://doi.org/10.1016/j.envsoft.2016.09.006

Turing, A. M. (1937) On computable numbers, with an application to the Entscheidungsproblem. Proceedings of the London Mathematical Society s2-42 (1), 230-265. https://doi.org/10.1112/plms/s2-42.1.230

Yoo, A. B., Jette, M. A. and Grondona, M. (2003) SLURM: Simple Linux utility for resource management. In Feitelson, D., Rudolph, L. and Schwiegelshohn, U. (eds.) Job Scheduling Strategies for Parallel Processing. 9th International Workshop, JSSPP 2003, Seattle, WA, USA, June 2003, Revised Papers. Lecture Notes in Computer Science 2862, pp. 44-60. Berlin, Germany: Springer. https://doi.org/10.1007/10968987_3


Polhill, G. (2022) Antisocial simulation: using shared high-performance computing clusters to run agent-based models. Review of Artificial Societies and Social Simulation, 14 Dec 2022. https://rofasss.org/2022/12/14/antisoc-sim


© The authors under the Creative Commons’ Attribution-NoDerivs (CC BY-ND) Licence (v4.0)