Tag Archives: ABM

The inevitable “layering” of models to extend the reach of our understanding

By Bruce Edmonds

Just as physical tools and machines extend our physical abilities, models extend our mental abilities, enabling us to understand and control systems beyond our direct intellectual reach” (Calder  & al. 2018)

Motivation

There is a modelling norm that one should be able to completely understand one’s own model. Whilst acknowledging there is a trade-off between a model’s representational adequacy and its simplicity of formulation, this tradition assumes there will be a “sweet spot” where the model is just tractable but also good enough to be usefully informative about the target of modelling – in the words attributed to Einstein, “Everything should be made as simple as possible, but no simpler1. But what do we do about all the phenomena where to get an adequate model2 one has to settle for a complex one (where by “complex” I mean a model that we do not completely understand)? Despite the tradition in Physics to the contrary, it would be an incredibly strong assumption that there are no such phenomena, i.e. that an adequate simple model is always possible (Edmonds 2013).

There are three options in these difficult cases.

  • Do not model the phenomena at all until we can find an adequate model we can fully understand. Given the complexity of much around us this would mean to not model these for the foreseeable future and maybe never.
  • Accept inadequate simpler models and simply hope that these are somehow approximately right3. This option would allow us to get answers but with no idea whether they were at all reliable. There are many cases of overly simplistic models leading policy astray (Adoha & Edmonds 2017; Thompson 2022), so this is dangerous if such models influence decisions with real consequences.
  • Use models that are good for our purpose but that we only partially understand. This is the option examined in this paper.

When the purpose is empirical the last option is equivalent to preferring empirical grounding over model simplicity (Edmonds & Moss 2005).

Partially Understood Models

In practice this argument has already been won – we do not completely understand many computer simulations that we use and rely on. For example, due to the chaotic nature of the dynamics of the weather, forecasting models are run multiple times with slightly randomised inputs and the “ensemble” of forecasts inspected to get an idea of the range of different outcomes that could result (some of which might be qualitatively different from the others)4. Working out the outcomes in each case requires the computational tracking of a huge numbers of entities in a way that is far beyond what the human mind can do5. In fact, the whole of “Complexity Science” can be seen as different ways to get some understanding of systems for which there is no analytic solution6.

Of course, this raises the question of what is meant by “understand” a model, for this is not something that is formally defined. This could involve many things, including the following.

  1. That the micro-level – the individual calculations or actions done by the model each time step – is understood. This is equivalent to understanding each line of the computer code.
  2. That some of the macro-level outcomes that result from the computation of the whole model is understood in terms of partial theories or “rules of thumb”.
  3. That all the relevant macro-level outcomes can be determined to a high degree of accuracy without simulating the model (e.g. by a mathematical model).

Clearly, level (1) is necessary for most modelling purposes in order to know the model is behaving as intended. The specification of this micro-level is usually how such models are made, so if this differs from what was intended then this would be a bug. Thus this level would be expected of most models7. However, this does not necessarily mean that this is at the finest level of detail possible – for example, we usually do not bother about how random number generators work, but simply rely on its operation, but in this case we have very good level (3) of understanding for these sub-routines.

At the other extreme, a level (3) understanding is quite rare outside the realm of physics. In a sense, having this level of understanding makes the model redundant, so would probably not be the case for most working models (those used regularly)8. As discussed above, there will be many kinds of phenomena for which this level of understanding is not feasible.

Clearly, what many modelers find useful is a combination of levels (1) & (2) – that is, the detailed, micro-level steps that the model takes are well understood and the outcomes understood well enough for the intended task. For example, when using a model to establish a complex explanation9 (of some observed pattern in data using certain mechanisms or structures) then one might understand the implementation of the candidate mechanisms and verify that the outcomes fit the target pattern for a range of parameters, but not completely understand the detail of the causation involved. There might well be some understanding, for example how robust this is to minor variations in the initial conditions or the working of the mechanisms involved (e.g. by adding some noise to the processes). A complete understanding might not be accessible but this does not stop an explanation being established (although a  better understanding is an obvious goal for future research or avenue for critiques of the explanation).

Of course, any lack of a complete, formal understanding leaves some room for error. The argument here is not deriding the desirability of formal understanding, but is against prioritising that over model adequacy. Also the lack of a formal, level (3), understanding of a model does not mean we cannot take more pragmatic routes to checking it. For example: performing a series of well-designed simulation experiments that intend to potentially refute the stated conclusions, systematically comparing to other models, doing a thorough sensitivity analysis and independently reproducing models can help ensure their reliability. These can be compared with engineering methods – one may not have a proof that a certain bridge design is solid over all possible dynamics, but practical measures and partial modelling can ensure that any risk is so low as to be negligible. If we had to wait until bridge designs were proven beyond doubt, we would simply have to do without them.

Layering Models to Leverage some Understanding

As a modeller, if I do not understand something my instinct is to model it. This instinct does not change if what I do not understand is, itself, a model. The result is a model of the original model – a meta-model. This is, in fact, common practice. I may select certain statistics summarising the outcomes and put these on a graph; I might analyse the networks that have emerged during model runs; I may use maths to approximate or capture some aspect of the dynamics; I might cluster and visualise the outcomes using Machine Learning techniques; I might make a simpler version of the original and compare them. All of these might give me insights into the behaviour of the original model. Many of these are so normal we do not think of this as meta-modelling. Indeed, empirically-based models are already, in a sense, meta-models, since the data that they represent are themselves a kind of descriptive model of reality (gained via measurement processes).

This meta-modelling strategy can be iterated to produce meta-meta-models etc. resulting in “layers” of models, with each layer modelling some aspect of the one “below” until one reaches the data and then what the data measures. Each layer should be able to be compared and checked with the layer “below”, and analysed by the layer “above”.

An extended example of such layering was built during the SCID (Social Complexity of Immigration and Diversity) project10 and illustrated in Figure 1. In this a complicated simulation (Model 1) was built to incorporate some available data and what was known concerning the social and behavioural processes that lead people to bother to vote (or not). This simulation was used as a counter-example to show how assumptions about the chaining effect of interventions might be misplaced (Fieldhouse et al. 2016). A much simpler simulation was then built by theoretical physicists (Model 2), so that it produced the same selected outcomes over time and aa range of parameter values. This allowed us to show that some of the features in the original (such as dynamic networks) were essential to get the observed dynamics in it (Lafuerza et al. 2016a). This simpler model was in turn modelled by an even simpler model (Model 3) that was amenable to an analytic model (Model 4) that allowed us to obtain some results concerning the origin of a region of bistability in the dynamics (Lafuerza et al. 2016b).

Layering fig 1

Figure 1. The Layering of models that were developed in part of the SCID project

Although there are dangers in such layering – each layer could introduce a new weakness – there are also methodological advantages, including the following. (A) Each model in the chain (except model 4) is compared and checked against both the layer below and that above. Such multiple model comparisons are excellent for revealing hidden assumptions and unanticipated effects. (B) Whilst previously what might have happened was a “heroic” leap of abstraction from evidence and understanding straight to Model 3 or 4, here abstraction happens over a series of more modest steps, each of which is more amenable to checking and analysis. When you stage abstraction the introduced assumptions are more obvious and easier to analyse.

One can imagine such “layering” developing in many directions to leverage useful (but indirect) understanding, for example the following.

  • Using an AI algorithm to learn patterns in some data (e.g. medical data for disease diagnosis) but then modelling its working to obtain some human-accessible understanding of how it is doing it.
  • Using a machine learning model to automatically identify the different “phase spaces” in model results where qualitatively different model behaviour is exhibited, so one can then try to simplify the model within each phase.
  • Automatically identifying the processes and structures that are common to a given set of models to facilitate the construction of a more general, ‘umbrella’ model that approximates all the outcomes that would have resulted from the set, but within a narrower range of conditions.

As the quote at the top implies, we are used to settling for partial control of what machines do because it allows us to extend our physical abilities in useful ways. Each time we make their control more indirect, we need to check that this is safe and adequate for purpose. In the cars we drive there are ever more layers of electronic control between us and the physical reality it drives through which we adjust to – we are currently adjusting to more self-drive abilities. Of course, the testing and monitoring of these systems is very important but that will not stop the introduction of layers that will make them safer and more pleasant to drive.

The same is true of our modelling, which we will need to apply in ever more layers in order to leverage useful understanding which would not be accessible otherwise. Yes, we will need to use practical methods to test their fitness for purpose and reliability, and this might include the complete verification of some components (where this is feasible), but we cannot constrain ourselves to only models we completely understand.

Concluding Discussion

If the above seems obvious, then why am I bothering to write this? I think for a few reasons. Firstly, to answer the presumption that understanding one’s model must have priority over all other considerations (such as empirical adequacy) so that sometimes we must accept and use partially understood models. Secondly, to point out that such layering has benefits as well as difficulties – especially if it can stage abstraction into more verifiable steps and thus avoid huge leaps to simple but empirically-isolated models. Thirdly, because such layering will become increasingly common and necessary.

In order to extend our mental reach further, we will need to develop increasingly complicated and layered modelling. To do this we will need to accept that our understanding is leveraged via partially understood models, but also to develop the practical methods to ensure their adequacy for purpose.

Notes

[1] These are a compressed version of his actual words during a 1933 lecture, which were: “It can scarcely be denied that the supreme goal of all theory is to make the irreducible basic elements as simple and as few as possible without having to surrender the adequate representation of a single datum of experience.” (Robinson 2018)
[2] Adequate for whatever our purpose for it is (Edmonds & al. 2019).
[3]The weasel words I once heard from a Mathematician excusing an analytic model he knew to be simplistic were: that, although he knew it was wrong, it was useful for “capturing core dynamics” (though how he knew that they were not completely wrong eludes me).
[4] For an introduction to this approach read the European Centre for Medium-Range Weather Forecasts’ fact sheet on “Ensemble weather forecasting” at: https://www.ecmwf.int/en/about/media-centre/focus/2017/fact-sheet-ensemble-weather-forecasting
[5] In principle, a person could do all the calculations involved in a forecast but only with the aid of exterior tools such as pencil and paper to keep track of it all so it is arguable whether the person doing the individual calculations has an “understanding” of the complete picture. Lewis Fry Richardson, who pioneered the idea of numerical forecasting of weather in the 1920s, did a 1-day forecast by hand to illustrate his method (Lynch 2008), but this does not change the argument.
[6] An analytic solution is when one can obtain a closed-form equation that characterises all the outcomes by manipulating the mathematical symbols in a proof. If one has to numerically calculate outcomes for different initial conditions and parameters this is a computational solution.
[7] For purely predictive models, whose purpose is only to anticipate an unknown value to a useful level of accuracy, this is not strictly necessary. For example, how some AI/Machine learning models work may not clear at the micro-level, but as long as it works (successfully predicts) this does not matter – even if its predictive ability is due to a bug.
[8] Models may still be useful in this case, for example to check the assumptions made in the matching mathematical or other understanding.
[9] For more on this use see (Edmonds et al. 2019).
[10] For more about this project see http://cfpm.org/scid

Acknowledgements

Bruce Edmonds is supported as part of the ESRC-funded, UK part of the “ToRealSim” project, 2019-2023, grant number ES/S015159/1 and was supported as part of the EPSRC-funded “SCID” project 2010-2016, grant number EP/H02171X/1.

References

Calder, M., Craig, C., Culley, D., de Cani, R., Donnelly, C.A., Douglas, R., Edmonds, B., Gascoigne, J., Gilbert, N. Hargrove, C., Hinds, D., Lane, D.C., Mitchell, D., Pavey, G., Robertson, D., Rosewell, B., Sherwin, S., Walport, M. and Wilson, A. (2018) Computational modelling for decision-making: where, why, what, who and how. Royal Society Open Science, DOI:10.1098/rsos.172096.

Edmonds, B. (2013) Complexity and Context-dependency. Foundations of Science, 18(4):745-755. DOI:10.1007/s10699-012-9303-x

Edmonds, B. and Moss, S. (2005) From KISS to KIDS – an ‘anti-simplistic’ modelling approach. In P. Davidsson et al. (Eds.): Multi Agent Based Simulation 2004. Springer, Lecture Notes in Artificial Intelligence, 3415:130–144. DOI:10.1007/978-3-540-32243-6_11

Edmonds, B., le Page, C., Bithell, M., Chattoe-Brown, E., Grimm, V., Meyer, R., Montañola-Sales, C., Ormerod, P., Root H. & Squazzoni. F. (2019) Different Modelling Purposes. Journal of Artificial Societies and Social Simulation, 22(3):6. DOI:10.18564/jasss.3993

Fieldhouse, E., Lessard-Phillips, L. & Edmonds, B. (2016) Cascade or echo chamber? A complex agent-based simulation of voter turnout. Party Politics. 22(2):241-256.  DOI:10.1177/1354068815605671

Lafuerza, LF, Dyson, L, Edmonds, B & McKane, AJ (2016a) Simplification and analysis of a model of social interaction in voting, European Physical Journal B, 89:159. DOI:10.1140/epjb/e2016-70062-2

Lafuerza L.F., Dyson L., Edmonds B., & McKane A.J. (2016b) Staged Models for Interdisciplinary Research. PLoS ONE, 11(6): e0157261. DOI:10.1371/journal.pone.0157261

Lynch, P. (2008). The origins of computer weather prediction and climate modeling. Journal of Computational Physics, 227(7), 3431-3444. DOI:10.1016/j.jcp.2007.02.034

Robinson, A. (2018) Did Einstein really say that? Nature, 557, 30. DOI:10.1038/d41586-018-05004-4

Thompson, E. (2022) Escape from Model Land. Basic Books. ISBN-13: 9781529364873


Edmonds, B. (2023) The inevitable “layering” of models to extend the reach of our understanding. Review of Artificial Societies and Social Simulation, 9 Feb 2023. https://rofasss.org/2023/02/09/layering


© The authors under the Creative Commons’ Attribution-NoDerivs (CC BY-ND) Licence (v4.0)

RofASSS to encourage reproduction reports and reviews of old papers&books

Reproducing simulation models is essential for verifying them and critiquing them. This involves a lot more work than one would think (Axtell & al. 1996) and can reveal surprising flaws, even in the simplest of models (e.g. Edmonds & Hales 2003). Such reproduction is especially vital if the model outcomes are likely to affect people’s lives (Chattoe-Brown & al. 2021).

Whilst substantial pieces of work – where there is extensive analysis or extension – can be submitted to JASSS/CMOT, some such reports might be much simpler and not justify a full journal paper. Thus RofASSS has decided to encourage researchers to submit reports of reproductions here – however simple or complicated.

Similarly, JASSS, CMOT etc. do publish book reviews, but these tend to be of recent books. Although new books are of obvious interest to those at the cutting edge of research, it often happens that important papers & books are forgotten or overlooked. At RofASSS we would like to encourage reviews of any relevant book or paper, however old.

References

Axtell, R., Axelrod, R., Epstein, J. M., & Cohen, M. D. (1996). Aligning simulation models: A case study and results. Computational & Mathematical Organization Theory, 1, 123-141. DOI: 10.1007/BF01299065

Edmonds, B., & Hales, D. (2003). Replication, replication and replication: Some hard lessons from model alignment. Journal of Artificial Societies and Social Simulation, 6(4), 11. https://jasss.soc.surrey.ac.uk/6/4/11.html

Chattoe-Brown, E. Gilbert, N., Robertson, D. A. & Watts, C. (2021) Reproduction as a Means of Evaluating Policy Models: A Case Study of a COVID-19 Simulation. medRxiv 2021.01.29.21250743; DOI: 10.1101/2021.01.29.21250743

Models in Social Psychology and Agent-Based Social simulation – an interdisciplinary conversation on similarities and differences

By Nanda Wijermans, Geeske Scholz, Rocco Paolillo, Tobias Schröder, Emile Chappin, Tony Craig, and Anne Templeton

Introduction

Understanding how individual or group behaviour are influenced by the presence of others is something both social psychology and agent-based social simulation are concerned with. However, there is only limited overlap between these two research communities, which becomes clear when terms such as “variable”, “prediction”, or “model” come into play, and we build on their different meanings. This situation challenges us when working together, since it complicates the uptake of relevant work from each community and thus hampers the potential impact that we could have when joining forces.

We[1] – a group of social psychologists and social simulation modellers – sought to clarify the meaning of models and modelling from an interdisciplinary perspective involving these two communities. This occurred while starting our collaboration to formalise ‘social identity approaches’ (SIA). It was part of our journey to learn how to communicate and understand each other’s work, insights, and arguments during our discussions.

We present a summary of our reflections on what we learned from and with each other in this paper, which we intend to be part of a conversation, complementary to existing readings on ABM and social psychology (e.g., Lorenz, Neumann, & Schröder, 2021; Smaldino, 2020; Smith & Conrey, 2007). Complementary, because one comes to understand things differently when engaging directly in conversation with people from other communities, and we hope to extend this from our network to the wider social simulation community.

What are variable- and agent-based models?

We started the discussion by describing to each other what we mean when we talk about “a model” and distinguishing between models in the two communities as variable-based models in social psychology and agent-based modelling in social simulation.

Models in social psychology generally come in two interrelated variants. Theoretical models, usually stated verbally and typically visualised with box-and-arrow diagrams as in Figure 1 (left), reflect assumptions of causal (but also correlational) relations between a limited number of variables. Statistical models are often based in theory and fitted to empirical data to test how well the explanatory variables predict the dependent variables, following the causal assumptions of the corresponding theoretical model. We therefore refer to social-psychological models as variable-based models (VBM). Core concepts are prediction and effect size. A prediction formulates whether one variable or combination of more variables causes an effect on an outcome variable. The effect size is the result of testing a prediction by indicating the strength of that effect, usually in statistical terms, the magnitude of variance explained by a statistical model.

It is good to realise that many social psychologists strive for a methodological gold standard using controlled behavioural experiments. Ideally, one predicts data patterns based on a theoretical model, which is then tested with data. However, observations of the real world are often messier. Inductive post hoc explanations emerge when empirical findings are unexpected or inconclusive. The discovery that much experimental work is not replicable has led to substantial efforts to increase the rigour of the methods, e.g., through the preregistration of experiments (Eberlen, Scholz & Gagliolo, 2017).

Models in Social Simulation come in different forms – agent-based models, mathematical models, microsimulations, system dynamic models etc – however here we focus on agent-based modelling as it is the dominant modelling approach within our SIAM network. Agent-based models reflect heterogeneous and autonomous entities (agents) that interact with each other and their environments over time (Conte & Paolucci, 2014; Gilbert & Troitzsch, 2005). Relationships between variables in ABMs need to be stated formally (equations or logical statements) in order to implement theoretical/empirical assumptions in a way that is understandable by a computer. An agent-based model can reflect assumptions about causal relations between as many variables as the modeller (team) intends to represent. Agent-based models are often used to help understand[2] why and how observed (macro) patterns arise by investigating the (micro/meso) processes underlying them (see Fig 1, right).

The extent to which social simulation models relate to data ranges from ‘no data used whatsoever’ to ‘fitting every variable value’ to empirical data. Put differently, the way one uses data does not define the approach. Note that assumptions based on theory and/or empirical observations do not suffice but require additional assumptions to make the model run.

Fig. 1: Visualisation of what a variable-based model in social psychology is (left) and what an agent-based model in social simulation is (right).

Comparing models

The discussion then moved from describing the meaning of “a model” to comparing similarities and differences between the concepts and approaches, but also what seems similar but is not…

Similar. The core commonalities of models in social psychology (VBM) and agent-based social simulation (ABM) are 1) the use of models to specify, test and/or explore (causal) relations between variables and 2) the ability to perform systematic experiments, surveys, or observations for testing the model against the real world. This means that words like ‘experimental design’, ‘dependent, independent and control variables’ have the same meaning. At the same time some aspects that are similar are labelled differently. For instance, the effect size in VBMs reflects the magnitude of the effect one can observe. In ABMs the analogy would be the sensitivity analysis, where one tests for the importance or role of certain variables on the emerging patterns in the simulation outcomes.

False Friends. There are several concepts that are given similar labels, but have different meanings. These are particularly important to be aware of in interdisciplinary settings as they can present “false friends”. The false friends we unpacked in our conversations are the following:

  • Model: whether the model is variable-based in social psychology (VBM) or agent-based in social simulation (ABM). The VBM focuses on the relation between two or a few variables typically in one snapshot of time, whereas the ABM focuses on the causal relations (mechanisms/processes) between (entities (agents) containing a number of) variables and simulates the resulting interactions over time.
  • Prediction: in VBMs a prediction is a variable-level claim, stating the expected magnitude of a  relation between two or few variables. In ABMs prediction would instead be a claim about the future real-world system-level developments on the basis of observed phenomena in the simulation outcomes. In case such prediction is not the model purpose (which is likely), each future simulated system state is sometimes labelled nevertheless as a prediction, though it doesn’t mean to be necessarily accurate as a prediction to the real-world future. Instead, it can for example be a full explanation of the mechanisms required to replicate the particular phenomenon or a possible trajectory of which reality is just one. 
  • Variable: here both types of models have variables (a label of some ‘thing’ that can have a certain ‘value’). In ABMs there can be many variables, some that have the same function as the variables in VBM (i.e., denoting a core concept and its value). Additionally, ABMs also have (many) variables to make things work.
  • Effect size: in VBM the magnitude of how much the independent variable can explain a dependent variable. In ABM the analogy would be sensitivity analysis, to determine the extent to which simulation outcomes are sensitive to changes in input settings. Note that, while effect size is critical in VBMs, in ABMs small effect sizes in micro interactions can lead toward large effects on the macro level.
  • Testing: VBMs usually test models using some form of hypothesis testing, whereas ABMs can be tested in very different ways (see David et al (2019)), depending on the purpose they have (e.g., explanation, theoretical exposition, prediction, see Edmonds et al. (2019)), and on different levels. For instance, testing can relate to the verification of the implementation of the model (software development specific), to make sure the model behaves as designed. However, testing can also relate to validation – checking whether the model lives up to its purpose – for instance testing the results produced by the ABM against real data if the aim is prediction of the real world-state.
  • Internal validity: in VBM this is to assure the causal relation between variables and their effect size. In ABMs it refers to the plausibility in assumptions and causal relations used in the model (design), e.g., by basing these on expert knowledge, empirical insights, or theory rather than on the modeller’s intuition only.

Differences. There are several differences when it comes to VBM and ABM. Firstly, there is a difference in what a model should replicate, i.e., the target of the model: in social psychology the focus tends to be on the relations between variables underlying behaviour, whereas in ABM it is usually on the macro-level patterns/structures that emerge. Also, the concept of causality differs in psychology, VBM models are predominantly built under the assumption of linear causality[3], with statistical models aiming to quantify the change in the dependent variable due to (associated) change in the independent variable. A causality or correlation often derived with “snapshot data”, i.e., one moment in time and one level of analysis. In ABMs, on the other hand, causality appears as a chain of causal relations that occur over time. Moreover, it can be non-linear (including multicausality, nonlinearity, feedback loops and/or amplifications of models’ outcomes). Lastly, the underlying philosophy can differ tremendously concerning the number of variables that are taken into consideration. By design, in social psychology one seeks to isolate the effects of variables, maintaining a high level of control to be confident about the effect of independent variables or the associations between variables. For example, by introducing control variables in regression models or assuring random allocation of participants in isolated experimental conditions. Whereas in ABMs, there are different approaches/preferences: KISS versus KIDS (Edmonds & Moss, 2004). KISS (Keep It Simple Stupid) advocates for keeping it simple as possible: only complexify if the simple model is not adequate. KIDS (Keep It Descriptive Stupid), on the other end of the spectrum, embraces complexity by relating to the target phenomenon as much as one can and only simplify when evidence justifies it. Either way, the idea of control in ABM is to avoid an explosion of complexity that impedes the understanding of the model, that can lead to e.g., causes misleading interpretations of emergent outcomes due to meaningless artefacts.

We summarise some core take-aways from our comparison discussions in Table 1.

Table 1. Comparing models in social psychology and agent-based social simulation

Social psychology (VBM)Social Simulation (ABM)
AimTheory development and prediction (variable level)Not predefined. Can vary widely purpose. (system level)
Model targetReplicate and test relations between variablesReproduce and/or explain a social phenomenon – the macro level pattern
Composed ofVariables and relations between themAgents, environment & interactions
Strive forHigh control, (low number of variables and relations ReplicationPurpose-dependent. Model complexity: represent what is needed, not more, not less.
TestingHypotheses testing using statistics, including possible measuring the effect size a relation to assess confidence in the variable’s importance’Purpose-dependent. Can refer to verification, validation, sensitivity analysis or all of them. See text and refs under false friends.
Causality(or correlation) between variables Linear representationBetween variables and/or model entities.
Non-linear representation
Theory developmentCritical reflection on theory through confirmation. Through hypothesis testing (a prediction) theory gets validated or (if not confirmed) input for reconsideration of the theory.IFF aim of model, ways of doing is not predefined. It can be reproducing the theory prediction with or without internal validity. ABMs can further help to identify gaps in existing theory.
DynamismLittle – often within snapshot causalityCore – within snapshot and over time causality
External validity(the ability to say something about the actual target/ empirical  phenomenon)VBM aims at generalisation and has predictive value for the phenomenon in focus. VBMs in lab experiments are often criticised for their weak external validity, considered high for field experiments.ABMs insights are about the model, not directly about the real world. Without making predictive claims, they often do aim to say something about the real world.

Beyond blind spots, towards complementary powers

We shared the result of our discussions, the (seemingly) communalities and differences between models in social psychology and agent-based social simulation. We allowed for a peek into the content of our interdisciplinary journey as we invested time, allowed for trust to grow, and engaged in open communication. All of this was needed in the attempt to uncover conflicting ways of seeing and studying the social identity approach (SIA). This investment was crucial to be able to make progress in formalising SIA in ways that enable for deeper insights – formalisations that are in line with SIA theories, but also to push the frontiers in SIA theory. Joining forces allows for deeper insights, as VBM and ABM complement and challenge each other, thereby advancing the frontiers in ways that cannot be achieved individually (Eberlen, Scholz & Gagliolo, 2017; Wijermans et al. 2022,). SIA social psychologists bring to the table the deep understanding of the many facets of SIA theories and can engage in the negotiation dance of the formalisation process adding crucial understanding of the theories, placed in their theoretical context. Social psychology in general can point to empirically supported causal relations between variables, and thereby increase the realism of the assumptions of agents (Jager, 2017; Templeton & Neville 2020). Agent-based social simulation, on the other hand, pushes for over-time causality representation, bringing to light (logical) gaps of a theory and providing explicitness and thereby adding to the development of testable (extended) forms of (parts of) a theory, including the execution of those experiments that are hard or impossible in controlled experiments. We thus started our journey, hoping to shed some light on blind spots and releasing our complementary powers in the formalisation of SIA.

To conclude, we felt that having a conversation together led to a qualitatively different understanding than would have been the case had we all ‘just’ reading informative papers. These conversations reflect a collaborative research process (Schlüter et al. 2019). In this RofASSS paper, we strive for widening this conversation to the social simulation community, connecting with others about our thoughts as well as hearing your experiences, thoughts and learnings while being on an interdisciplinary journey with minds shaped by variable-based or agent-based models, or both.

Acknowledgements

The many conversations we had in this stimulating scientific network since 2020 were funded by the the  Deutsche Forschungsgemeinschaft (DFG- 432516175)

References

Conte, R., & Paolucci, M. (2014). On agent-based modeling and computational social science. Frontiers in psychology, 5, 668. DOI:10.3389/fpsyg.2014.00668

David, N., Fachada, N., & Rosa, A. C. (2017). Verifying and validating simulations. In Simulating social complexity (pp. 173-204). Springer, Cham. DOI:10.1007/978-3-319-66948-9_9

Eberlen, J., Scholz, G., & Gagliolo, M. (2017). Simulate this! An introduction to agent-based models and their power to improve your research practice. International Review of Social Psychology, 30(1). DOI:10.5334/irsp.115/

Edmonds, B., & Moss, S. (2004). From KISS to KIDS–an ‘anti-simplistic’modelling approach. In International workshop on multi-agent systems and agent-based simulation (pp. 130-144). Springer, Berlin, Heidelberg. DOI:10.1007/978-3-540-32243-6_11

Edmonds, B., Le Page, C., Bithell, M., Chattoe-Brown, E., Grimm, V., Meyer, R., Montañola-Sales, C., Ormerod, P., Root, H. and Squazzoni, F. (2019) ‘Different Modelling Purposes’ Journal of Artificial Societies and Social Simulation 22 (3) 6 <http://jasss.soc.surrey.ac.uk/22/3/6.html>. doi: 10.18564/jasss.3993

Gilbert, N., & Troitzsch, K. (2005). Simulation for the social scientist. McGraw-Hill Education (UK).

Jager, W. (2017). Enhancing the realism of simulation (EROS): On implementing and developing psychological theory in social simulation. Journal of Artificial Societies and Social Simulation, 20(3). https://jasss.soc.surrey.ac.uk/20/3/14.html

Lorenz, J., Neumann, M., & Schröder, T. (2021). Individual attitude change and societal dynamics: Computational experiments with psychological theories. Psychological Review, 128(4), 623-642.  https://doi.org/10.1037/rev0000291

Smaldino, P. E. (2020). How to Translate a Verbal Theory Into a Formal Model. Social Psychology, 51(4), 207–218. http://doi.org/10.1027/1864-9335/a000425

Schlüter, M., Orach, K., Lindkvist, E., Martin, R., Wijermans, N., Bodin, Ö., & Boonstra, W. J. (2019). Toward a methodology for explaining and theorizing about social-ecological phenomena. Current Opinion in Environmental Sustainability, 39, 44-53. DOI:10.1016/j.cosust.2019.06.011

Smith, E.R. & Conrey, F.R. (2007): Agent-based modeling: a new approach for theory building in social psychology. Pers Soc Psychol Rev, 11:87-104. DOI:10.1177/1088868306294789

Templeton, A., & Neville, F. (2020). Modeling collective behaviour: insights and applications from crowd psychology. In Crowd Dynamics, Volume 2 (pp. 55-81). Birkhäuser, Cham. DOI:10.1007/978-3-030-50450-2_4

Wijermans, N., Schill, C., Lindahl, T., & Schlüter, M. (2022). Combining approaches: Looking behind the scenes of integrating multiple types of evidence from controlled behavioural experiments through agent-based modelling. International Journal of Social Research Methodology, 1-13. DOI:10.1080/13645579.2022.2050120

Notes 

[1] Most VBMs are linear (or multilevel linear models), but not all.  In the case of non-normally distributed data changes the tests that are used.

[2] We are researchers keen to use, extend, and test the social identity approach (SIA) using agent-based modelling. We started from interdisciplinary DFG network project (SIAM: Social Identity in Agent-based Models, https://www.siam-network.online/) and now form a continuous special-interest group at the European Social Simulation Association (ESSA) http://www.essa.eu.org/.

[3] ABMs can cater to diverse purposes, e.g., description, explanation, prediction, theoretical exploration, illustration, etc. (Edmonds et al., 2019).


Wijermans, N., Scholz, G., Paolillo, R., Schröder, T., Chappin, E., Craig, T. and Templeton, A. (2022) Models in Social Psychology and Agent-Based Social simulation - an interdisciplinary conversation on similarities and differences. Review of Artificial Societies and Social Simulation, 4 Oct 2022. https://rofasss.org/2022/10/04/models-in-spabss/


© The authors under the Creative Commons’ Attribution-NoDerivs (CC BY-ND) Licence (v4.0)

Is The Journal of Artificial Societies and Social Simulation Parochial? What Might That Mean? Why Might It Matter?

By Edmund Chattoe-Brown

Introduction

The Journal of Artificial Societies and Social Simulation (hereafter JASSS) retains a distinctive position amongst journals publishing articles on social simulation and Agent-Based Modelling. Many journals have published a few Agent-Based Models, some have published quite a few but it is hard to name any other journal that predominantly does this and has consistently done so over two decades. Using Web of Science on 25.07.22, there are 5540 hits including the search term <“agent-based model”> anywhere in their text. JASSS does indeed have the most of any single journal with 268 hits (5% of the total to the nearest integer). The basic search returns about 200 distinct journals and about half of these have 10 hits or less. Since this search is arranged by hit count, this means that the unlisted journals have even fewer hits than those listed i. e. less than 7 per journal. This supports the claim that the great majority of journals have very limited engagement with Agent-Based Modelling. Note that the point here is to evidence tendencies effectively and not to claim that this specific search term tells us the precise relative frequency of articles on the subject of Agent-Based Modelling in different journals.

This being so, it seems reasonable – and desirable for other practical reasons like being entirely open access, online and readily searchable – to use JASSS as a sample – though clearly not necessarily a representative sample – of what may be happening in Agent-Based Modelling more generally. This is the case study approach (Yin 2009) where smaller samples may be practically unavoidable to discuss richer or more complex phenomena like the actual structures of arguments rather than something quantitative like, say, the number of sources cited by each article.

This piece is motivated by the scepticism that some reviewers have displayed about such a case study approach focused on JASSS and conclusions drawn from it. It is actually quite strange to have the editors and reviewers of a journal argue against its ability to tell us anything useful about wider Agent-Based Modelling research even as a starting point (particularly since this approach has been used in articles previously published in the journal, see for example, Meyer et al. 2009 and Hauke et al. 2017). Of course, it is a given that different journals have unique editorial policies, distinct reviewer pools and so on. Though this may mean, for example, that journals only irregularly publishing Agent-Based Models are actually less typical because it is more arbitrary who reviews for them and there may therefore be less reviewing skill and consensus about the value of articles involved. Anecdotally, I have found this to be true in medical journals where excellent articles rub shoulders with much more problematic ones in a small overall pool. The point of my argument is not to claim that JASSS can really stand in for ABM research as a whole – which it plainly cannot – but that, if the case study approach is to be accepted at all, JASSS is one of the few journals that successfully qualifies for it on empirically justifiable grounds. Conversely, given the potentially distinctive character of journals and the wide spread of Agent-Based Modelling, attempts at representative sampling may be very challenging in resource terms.

Method and Results

Again, using Web of Science on 04.07.22, I searched for the most highly cited articles containing the string “opinion dynamics”. I am well aware that this will not capture all articles that actually have opinion dynamics as their subject matter but this is not the intention. The intention is to describe a reproducible and measurable procedure correlated with the importance of articles so my results can be checked, criticised and extended. Comparing results based on other search terms would be part of that process. Then I took the first ten distinct journals that could be identified from this set of articles in order of citation count. The idea here was to see what journals had published the most important articles in the field overall – at least as identified by this particular search term – and then follow up their coverage of opinion dynamics generally. In addition, for each journal, I accessed the top 50 most cited articles and then checked how many articles containing the string “opinion dynamics” featured in that top 50. The idea here was to assess the extent to which opinion dynamics articles were important to the impact of a particular journal. Table 1 shows the results of this analysis.

Journal Title “opinion dynamics” Articles in the Top 50 Most Cited Most Highly Cited “opinion dynamics” Article Citations Number of Articles Containing the String “opinion dynamics”
Reviews of Modern Physics 0 2380 1
JASSS 6 1616 64
International Journal of Modern Physics C 4 376 72
Dynamic Games and Applications 1 338 5
Physical Review Letters 0 325 5
Global Challenges 1 272 1
IEEE Transactions on Automatic Control 0 269 38
SIAM Review 0 258 2
Central European Journal of Operations Research 1 241 1
Physica A: Statistical Mechanics and Its Applications 0 231 143

Table 1. The Coverage, Commitment and Importance of Different Journals in Regard to “opinion dynamics”: Top Ten by Citation Count of Most Influential Article.

This list attempts to provide two somewhat separate assessments of a journal with regard to “opinion dynamics”. The first is whether it has a substantial body of articles on the topic: Coverage. The second is whether, by the citation levels of the journal generally, “opinion dynamics” models are important to it: Commitment. These journals have been selected on a third dimension, their ability to contribute at least one very influential article to the literature as a whole: Importance.

The resulting patterns are interesting in several ways. Firstly, JASSS appears unique in this sample in being a clearly social science journal rather than a physical science journal or one dealing with instrumental problems like operations research or automatic control. It is an interesting corollary how many “opinion dynamics” models in a physics journal will have been reviewed by social scientists or modellers with a social science orientation at least. This is part of a wider question about whether, for example, physics journals are mainly interested in these models as formal systems rather than as having likely application to real societies. Secondly, 3 journals out of 10 have only a single “opinion dynamics” article – and a further journal has only 2 – which are nonetheless, extremely highly cited relative to such articles as a whole. It is unclear whether this “only one but what a one” pattern has any wider significance. It should also be noted that the most highly cited article in JASSS is four times more highly cited than the next most cited. Only 4 of these journals out of 10 could really be said to have a usable sample of such articles for case study analysis. Thirdly, only 2 journals out of 10 have a significant number of articles sufficiently important that they appear in the top 50 most cited and 5 journals have no “opinion dynamics” articles in their top 50 most cited at all. This makes the point that a journal can have good coverage of the topic and contain at least one highly cited article without “opinion dynamics” necessarily being a commitment of the journal.

Thus it seems that to be a journal contributing at least one influential article to the field as a whole, to have several articles that are amongst the most cited by that journal and to have a non-trivial number of articles overall is unusual. Only one other journal in the top 10 meets all three criteria (International Journal of Physics C). This result is corroborated in Table 2 which carries out the same analysis for all additional journals containing at least one highly cited “opinion dynamics” article (with an arbitrary cut off of at least 100 citations for that article). There prove to be fourteen such journals in addition to the ten above.

Journal Title “opinion dynamics” Articles in the Top 50 Most Cited Most Highly Cited “opinion dynamics” Article Citations Number of Articles Containing the String “opinion dynamics”
Mathematics of Operations Research 1 215 2
Information Sciences 0 186 14
Physica D: Nonlinear Phenomena 0 182 4
Journal of Complex Networks 1 177 5
Annual Reviews in Control 2 165 4
Information Fusion 0 154 11
IEEE Transactions on Control of Network Systems 3 151 12
Automatica 0 141 32
Public Opinion Quarterly 0 132 5
Physical Review E 0 129 74
SIAM Journal on Control and Optimization 0 127 13
Europhysics Letters 0 116 3
Knowledge-Based Systems 0 112 5
Scientific Reports 0 111 26

Table 2. The Coverage, Commitment and Importance of Different Journals in Regard to “opinion dynamics”: All Remaining Distinct Journals whose most important “opinion dynamics” article receives at least 100 citations.

Table 2 confirms the dominance of physical science journals and those solving instrumental problems as opposed to those evidently dealing with the social sciences: A few terms like complex networks are ambivalent in this regard however. Further it confirms the scarcity of journals that simultaneously contribute at least one influential article to the wider field, have a sensibly sized sample of articles on this topic – so that provisional but nonetheless empirical hypotheses might be derived from a case study – and have “opinion dynamics” articles in their top 50 most cited articles as a sign of the importance of the topic to the journal and its readers. To some extent, however, the latter confirmation is an unavoidable artefact of the sampling strategy. As the most cited article becomes less highly cited, the chance it will appear in the top 50 most cited for a particular journal will almost certainly fall unless the journal is very new or generally not highly cited.

As a third independent check, I again used Web of Science to identify all journals which had – somewhat arbitrarily – at least 30 articles on “opinion dynamics”, giving some sense of their contribution. Only two more journals (see Table 3) not already occurring in the two tables above were identified. Generally, this analysis considers only journal articles and not conference proceedings and book chapter serials whose peer review status is less clear/comparable.

Journal Title “opinion dynamics” Articles in the Top 50 Most Cited Most Highly Cited “opinion dynamics” Article Citations Number of Articles Containing the String “opinion dynamics”
Advances in Complex Systems 5 54 42
Plos One 0 53 32

Table 3. The Coverage, Commitment and Importance of Different Journals: All Journals with at Least 30 “opinion dynamics” hits not already listed in Tables 1 and 2.

This cross check shows that while the additional journals do have sample of articles large enough to form the basis for a case study, they either have not yet contributed a really influential article to the wider field – less than half the number of citations of the journals which qualify for Tables 1 and 2, do not have a high commitment to opinion dynamics – in terms of impact within the journal and among its readers – or both.

Before concluding this analysis, it is worth briefly reflecting on what these three criteria jointly tell us – though other criteria could also be used in further research. By sampling on highly cited articles we focus on journals that have managed to go beyond their core readership and influence the field as a whole. There is a danger that journals that have never done this are merely “talking to themselves” and may therefore form a less effective basis for a case study speaking to the field as a whole. By attending to the number of articles in the top 50 for the journal, we get a sense of whether the topic is central (or only peripheral) to that journal/its readership and, again, journals where the topic is central stand a chance of being better case studies than those where it is peripheral. The criteria for having enough articles is simply a practical one for conducting a meaningful case study. Researchers using different methods may disagree about how many instances you need to draw useful conclusions but there is general agreement that it is more than one!

Analysis and Conclusions

The present article was motivated by an attempt to evaluate the claim that JASSS may be parochial and therefore not constitute a suitable basis for provisional hypotheses generated by case study analysis of its articles. Although the argument presented here is clearly rough and ready – and could be improved on by subsequent researchers – it does not appear to support this claim. JASSS actually seems to be one of very few journals – arguably the only social science one – that simultaneously has made at least one really influential contribution to the wider field of opinion dynamics, has a large enough number of articles on the topic for plausible generalisation and has quite a few such articles in its top 50, which shows the importance of the topic to the journal and its wider readership. Unless one wishes to reject case study analysis altogether, there are – in fact – very few other journals on which it can effectively be done for this topic.

But actually, my main conclusion is a wider reflection on peer reviewing, sampling and scientific progress based on reviewer resistance to the case study approach. There are 1386 articles with the search term “opinion dynamics” in Web of Science as of 25.07.22. It is clearly not realistic for one article – or even one book – to analyse all that content, particularly qualitatively. This being so we have to consider what is practical and adequate to generate hypotheses suitable for publication and further development of research along these lines. Case studies of single journals are not the only strategy but do have a recognised academic tradition in methodology (Brown 2008). We could sample randomly from the population of articles but I have never yet seen such a qualitative analysis based on sampling and it is not clear whether it would be any better received by potential reviewers. (In particular, with many journals each having only a few examples of Agent-Based Models, realistically low sampling rates would leave many journals unrepresented altogether which would be a problem if they had distinctive approaches.)  Most journals – including JASSS – have word limits and this restricts how much you can report. Qualitative analysis is more drawn-out than quantitative analysis which limits this research style further in terms of practical sample sizes. Both reading whole articles for analysis and writing up the resulting conclusions takes more resources of time and word count. As long as one does not claim that a qualitative analysis from JASSS can stand for all Agent-Based Modelling – but is merely a properly grounded hypothesis for further investigation – and shows ones working properly to support that further investigation, it isn’t really clear why that shouldn’t be sufficient for publication. Particularly as I have now shown that JASSS isn’t notably parochial along several potentially relevant dimensions. If a reviewer merely conjectures that your results won’t generalise, isn’t the burden of proof then on them to do the corresponding analysis and publish it? Otherwise the danger is that we are setting conjecture against actual evidence – however imperfect – and this runs the risk of slowing scientific progress by favouring research compatible with traditionally approved perspectives in publication. It might be useful to revisit the everyday idea of burden of proof in assessing the arguments of reviewers. What does it take in terms of evidence and argument (rather than simply power) for a comment by a reviewer to scientifically require an answer? It is a commonplace that a disproved hypothesis is more valuable to science than a mere conjecture or something that cannot be proven one way or another. One reason for this is that scientific procedure illustrates methodological possibility as well as generating actual results. A sample from JASSS may not stand for all research but it shows how a conclusion might ultimately be reached for all research if the resources were available and the administrative constraints of academic publishing could be overcome.

As I have argued previously (Chattoe-Brown 2022), and has now been pleasingly illustrated (Keijzer 2022), this situation may create an important and distinctive role for RofASSS. It may be valuable to get hypotheses, particularly ones that potentially go against the prevailing wisdom, “out there” so they can subsequently be tested more rigorously rather than having to wait until the framer of the hypothesis can meet what may be a counsel of perfection from peer reviewers. Another issue with reviewing is a tendency to say what will not do rather than what will do. This rather the puts the author at the mercy of reviewers during the revision process. RofASSS can also be used to hive off “contextual” analyses – like this one regarding what it might mean for a journal to be parochial – so that they can be developed in outline for the general benefit of the Agent-Based Modelling community – rather than having to add length to specific articles depending on the tastes of particular reviewers.

Finally, as should be obvious, I have only suggested that JASSS is not parochial in regard to articles involving the string “opinion dynamics”. However, I have also illustrated how this kind of analysis could be done systematically for different topics to justify the claim that a particular journal can serve as a reasonable basis for a case study.

Acknowledgements

This analysis was funded by the project “Towards Realistic Computational Models Of Social Influence Dynamics” (ES/S015159/1) funded by ESRC via ORA Round 5.

References

Brown, Patricia Anne (2008) ‘A Review of the Literature on Case Study Research’, Canadian Journal for New Scholars in Education/Revue Canadienne des Jeunes Chercheures et Chercheurs en Éducation, 1(1), July, pp. 1-13, https://journalhosting.ucalgary.ca/index.php/cjnse/article/view/30395.

Chattoe-Brown, E. (2022) ‘If You Want to Be Cited, Don’t Validate Your Agent-Based Model: A Tentative Hypothesis Badly in Need of Refutation’, Review of Artificial Societies and Social Simulation, 1st Feb 2022. https://rofasss.org/2022/02/01/citing-od-models

Hauke, Jonas, Lorscheid, Iris and Meyer, Matthias (2017) ‘Recent Development of Social Simulation as Reflected in JASSS Between 2008 and 2014: A Citation and Co-Citation Analysis’, Journal of Artificial Societies and Social Simulation, 20(1), 5. https://www.jasss.org/20/1/5.html. doi:10.18564/jasss.3238

Keijzer, M. (2022) ‘If You Want to be Cited, Calibrate Your Agent-Based Model: Reply to Chattoe-Brown’, Review of Artificial Societies and Social Simulation, 9th Mar 2022. https://rofasss.org/2022/03/09/Keijzer-reply-to-Chattoe-Brown

Meyer, Matthias, Lorscheid, Iris and Troitzsch, Klaus G. (2009) ‘The Development of Social Simulation as Reflected in the First Ten Years of JASSS: A Citation and Co-Citation Analysis’, Journal of Artificial Societies and Social Simulation, 12(4), 12,. https://www.jasss.org/12/4/12.html.

Yin, R. K. (2009) Case Study Research: Design and Methods, fourth edition (Thousand Oaks, CA: Sage).


Chattoe-Brown, E. (2022) Is The Journal of Artificial Societies and Social Simulation Parochial? What Might That Mean? Why Might It Matter? Review of Artificial Societies and Social Simulation, 10th Sept 2022. https://rofasss.org/2022/09/10/is-the-journal-of-artificial-societies-and-social-simulation-parochial-what-might-that-mean-why-might-it-matter/


© The authors under the Creative Commons’ Attribution-NoDerivs (CC BY-ND) Licence (v4.0)

Towards contextualized social simulation: Complementary use of Multi-Fuzzy Cognitive Maps and MABS

By Oswaldo Terán1 and Jose Aguilar2

1Escuela de Ciencias Empresariales, Universidad Católica del Norte, Coquimbo, Chile, and CESIMO, Universidad de Los Andes, Mérid.

2CEMISID, Universidad de Los Andes, Merida, Venezuela; GIDITIC, Universidad EAFIT, Medellin, Colombia; and Universidad de Alcala, Dpto. Automatica, Alcala de Henares, Spain.

Abstract.

This work suggests to complementarily use Multi-Fuzzy Cognitive Maps (MFCM) and Multi-agent Based Simulation (MABS) for social simulation studies, to overcome deficiencies of MABS for contextually understanding social systems, including difficulties for considering the historical and political domains of the systems, variation of social constructs such as goals and interest, as well as modeler’s perspective and assumptions. MFCM are a construction much closer than MABS to natural language and narratives, used to model systems appropriately conceptualized, with support of data and/or experts in the modeled domains. Diverse domains of interest can be included in a MFCM, permitting to incorporate the history and context of the system, explicitly represent and vary agents’ social constructs, as well as take into account modeling assumptions and  perspectives.  We briefly describe possible forms of complementarily use these modeling paradigms, and exemplifies the importance of the approach by considering its relevance to investigate othering and polarization.

1. Introduction

In order to understand better issues such as othering and polarization, there is a claim in social simulation for research that includes the important domains of history, politics and game of power, as well as for greater use of social science data, make more explicit and conscious about the models’ assumptions, and be more cautious in relation to the interpretation of the simulations’ results (Edmonds et al., 2020). We describe a possible form of dealing with these difficulties: combining Multi-Agent based Simulation (MABS) and Multi Fuzzy Cognitive Maps (MFCM) (or other forms of cognitive maps), suggesting new forms of dealing with complexity of social behavior. By using MFCM an alternative modeling perspective to MABS is introduced, which facilitates expressing the context of the model, and the modelers’ assumptions, as suggested in Terán (2004).  We will consider as a case studying othering and polarization, given the difficulties for modeling it via MABS (Edmonds et al., 2020). Our proposal permits to explicitly represent social constructs such as goals, interest and influence of powerful actors on, e.g., people’s othering and polarization, and so in better contextualizing the simulated model. Variations of social constructs (e.g., goals, othering, polarization, interests) can be characterized and modeled by using MFCM.

Combined use of MABS and Fuzzy Cognitive Maps (FCM) (MFCM, multi FCM, are an extension of FCM, see the Annex) has already been suggested, see for example Giabbanelli (2017). MABS develop models at the micro level, while FCM and MFCM permits us to create models at the macro or contextual level; the idea is to use one to complement the other, i.e., to generate rich feedback between them and enhance the modeling process. Additionally, Giabbanelli propose FCM as a representation closer than MABS to natural language, allowing more participatory models, and better representation of the decision making process. Giabbanelli recommend forms of combining these two modeling approaches, highlighting key questions modelers must be careful about. In this line, we also propose a combined usage of a MFCM and MABS to overcome deficiencies of MABS modelling in Social Simulation.

Initially (in section 2) we offer a description of human societies from a broad view point,  which recognizes their deep complexities and clarifies the need for better contextualizing simulation models, allowing modeling of diverse agents’ constructs, and making explicit modelers’ assumptions and perspectives. Afterwards (in section 3), we briefly review the drawbacks of MABS for modeling some of these deep complexities. Then (in section 4), MFCM are briefly described, supported on a brief technical account in the Annex. Following (in section 5), we suggest to complementarily use MABS and MFCM for having a more comprehensive representation of human societies and their context, e.g., to better model problems such as othering and polarization. MFCM will model context and give a conceptual mark for MABS (allowing to model variation of context, e.g., changes of agents’ interests or goals, making explicit modelers’ perspective and assumptions, among other advantages), which, in turn, can be used to explore in detail specific configurations or scenarios of interest suggested by the MFCM.  Finally (in section 6), some conclusions are given.

2. (A wide view of) Human societies and influence of communication media on actual culture

As humans and primates, we recognise the social groups within which we develop as people (e.g., family, the community where we grow up, partners at the school or at work) as part of our “large home”, in which its members develop a common identity, with strong rational and emotional links. Other groups beyond these close ones are “naturally” estrangers for us and its members “instinctively” seen as others. In large civilizations such as western society, we extend somewhat these limits to include nations, in certain respects. In groups we develop perspectives, follow certain myths and rites, and have common interests, viewpoints about problems, solutions for these, and give meaning to our life. Traditionally, human societies evolve from within groups by direct face to face interaction of its members, with diverse perspectives, goals, interest, and any other social construct with respect to other groups. Nowadays this evolution mainly from natural interaction has been importantly altered in some societies, especially western and western influenced societies, where social media has introduced a new form of communication and grouping: virtual grouping. Virtual grouping consists in the creation of groups, either formally or informally, by using the internet, and social networks such as Facebook, Instagram, etc. In this process, we access certain media sites, while discarding others, in accordance with our preferences, which in turn depends on our way of thinking and preferences created in social, both virtual and direct (face to face), interaction. Currently, social media, and traditional media (TV, newspapers, etc.) have a strong influence on our culture, impacting on ours myths, rites, perspectives, forms of life, goals, interests, opinion, reasoning, emotions, and othering.

Characteristics of virtual communication, e.g., anonymity, significantly impacts on all these constructs, which, differently from natural interaction, have a strong potential to promote polarization, because of several reasons, e.g., given that virtual environments usually create less reflexive groups, and emotional communication is poorer or lack deepness. Virtual interaction is poorer than direct social interaction: the lack of physical contact strongly reduces our emotional and reflexive connection. Virtual social interaction is “colder” than direct social interaction; e.g., lack of visual contact stops communication of many emotions that are transmitted via gestures, and prevents the call for attention from the other that visual contact and gestures demands.

Even more, many times sources and veracity of information, comments, ideas, and whatever is in social media, are not clear. Even more, fake news are common in social media, what generate false beliefs, and behavior of people influenced and somewhat controlled by those who promote fake news. Fake news can in this sense generate polarisation, as some groups in the society prefer certain media, and other groups choose a different one. As these media may promote different perspectives following interest of powerful actors (e.g., political parties), conflicting perspectives are induced in the different groups, what in turn generates polarization. Social media are highly sensitive to manipulation by powerful actors worldwide, including governments (because of, e.g., their geopolitical interests and strategies), corporations (in accordance with their economic goals), religious groups, political parties, among many others. Different groups of interests influence in direct and indirect, visible and hidden, forms the media, following a wide diversity of strategies, e.g., those of business marketing, which are supported by knowledge of people (e.g., psychology, sociology, games theory, etc.). Thus, the media can create and contribute to create visions of the word, or perspectives, in accordance with the interest of powerful international or national actors. For more about all this, see, e.g, Terán and Aguilar (2018).

As a consequence, people following media that promotes a world view, related with some powerful actor(s) (e.g., a political party or a group of governments) virtually group around media that support this world view, while other people do the same in relation to other media and powerful actor(s), who promote(s) a different perspective, which many times is in conflict with the first one. Thus, grouping following the media sometimes promotes groups with conflicting perspectives, goals, interests, etc.,  which generates polarization. We can find examples of this in diverse regions and countries of the world. The media has important responsibility for polarization in a diversity of issues such as regional integration in Europe, war in Ukraine, migrations from Middle East or Africa to Europe, etc. Consequently, media manipulation sometimes allow powerful actors to influence and somewhat control perspectives and social behavior. Even more, the influence of social media on people is sometimes stronger than the influence of direct social interaction. All these introduce deep complex issues in social human interaction and behavior. This is why we have chosen polarization as the case study for his essay.

Consequently, to comprehend actual human behavior, and in particular polarization, it is necessary to appropriately take into account the social context, what permits to understand better the actual complexity of social interaction, e.g., how powerful international, national, and local actors’ influence on media affects people perspectives, goals, interest, and polarization, as well as their strategies and actions in doing so. Contextualized modeling will help in determining social constructs (goals, interests, etc.) in certain situations, and their variation from situation to situation. For this, we suggest complementing MABS with MFCM. For more about the consequences of virtual interaction, see for example Prensky (2001a, 2001b). Prensky (2009) has also suggested forms to overcome such consequences: to promote digital wisdom. MABS and MFCM models will help in defining forms of dealing with the problems of high exposure to social networks, in line with Prensky’s concerns.

3. Weakness of the MABS approach for modeling context

Edmonds et al. (2020) recognize that MABS models assume a “state of the world” or “state of nature” that does not include the historical context of the agent, e.g., in such a way that they explicitly present goals, interests, etc., and pursue them via political actions, sometimes exerting power over others. For instance, the agents can not change their goals, interests or desires during the simulation, to show certain evolution, as a consequence of reflection and experience at the level of desires, allowing cognitive variations. The models are strongly limited in relation to representing the context of the social interaction, which in part determines variation of important factors of agents’ behavior, e.g., goals. This, to a good extent, is due to lack of representation of the agents’ context. For the same reason, it is difficult to represent modelers assumptions and perspectives, which might also be influenced by social media and powerful actors, as explained above.

The Special Issue of the Social Science Computer Review. (Volume 38, Issue 4, August 2020, see for instance Edmonds et al. (2020) and Rocco and Wander (2020)), presents several models aiming at dealing with some of these drawbacks of MABS, specifically, to relate models to social science data, be more aware about the models’ assumptions, and be more cautious in relation to the interpretation of the simulations’ results. However, in these works diverse difficulties are not addressed, e.g.,  having appropriate representation of the context in order to explicitly consider diverse constructs, e.g., goals and interests, as well as having a wide representation of modelers perspectives and assumptions so that diverse perspectives can be addressed and compared, among other important matters.

MABS represent social interaction, i.e., the interaction in a group, where the agent’s goal, and other social constructs are assumed given, not variable, and to understand the context where they appear is not of interest or is out of reach (too difficult). However, as explained above, agents are in diverse social groups, not only in the simulated one, and so goals, interests, and beliefs in the modeled group are shaped in accordance to their interactions in diverse groups, and the influence of multiple, virtual and natural groups in which they participate. In order to represent variations of such elements, the context must be taken into account, as well as to elaborate models from narratives. MFCM is naturally close to narratives, as it is elaborated from conceptual frameworks. In this sense, MFCM might represent an intermediate step towards MABS models. In a MFCM and in the steps towards elaborating the MABS, modelers’ perspectives and assumptions can be made explicit. In addition, MABS presents limitations to determine the conditions for which a certain behavior or tendency occurs (Terán, 2001; Terán et al. 2001), i.e., for making strong inferences and theorem proving of tendencies for subsets of the theory of the simulation, which could more easily be performed in the MFCM. Hopefully, exploring configurations of the MFCM the proof could be carried out indirectly, in a higher level than in MABS, as has already been suggested in previous papers (Aguilar et al., 2020; Perozo et al., 2013).

4. Multi-Fuzzy Cognitive Maps (MFCM)

We suggest conceptual or cognitive maps as a more flexible form than MABS to represent context of a social situation, and in particular MFCM, as implemented by Aguilar and others (see e.g., Kosko, 1986; Aguilar 2005, 2013, 2016; Aguilar et al., 2016, 2020; Contreras and Aguilar, 2010; and Sánchez et al., 2019; Puerto et al., 2019). A brief description of Fuzzy and Multi-fuzzy cognitive maps, following Sánchez et al. (2019), is given in the Annex.

Fuzzy cognitive maps help us in describing the context via qualitative (e.g., very low, low, medium, high, too high) and quantitative variables, as indicated in the annex. The system is represented by the network of concepts (variables) interrelated via weights (also given by variables). The high level of the MFCM paradigm, differently from a MABS, permits us to explicit different elements of the models such as the agents constructs (goals, interests, etc.), as well as the modelers assumptions and perspectives, as suggested in Terán (2004). MFCM will facilitate to explicit the accumulated set of assumptions (“abstraction-assumptions, design-assumptions, inference-assumptions, analysis-assumptions, interpretation-assumptions and application-assumptions”, as these are summarized in Terán, 2004).

In a MFCM, a particular situation of the system is given by a specific configuration of the weights (see, e.g., Sánchez et al., 2019). Suppose we are dealing with a model similar to that elaborated in Sánchez et al. (2019) to study the quality of opinion in a community. Sánchez et al. examine the capabilities of the MFCM for knowledge description and extraction about opinions presented in a certain topic, allowing the assessment of the quality of public opinion. Special attention is offered to the influence of the media on public opinion. The evolution of the concepts and relationships is presented. Concepts define the relevant aspects from which public opinion emerges, covering diverse domains, for instance, the social, technological and psycho-biological ones. The MFCM permits to identify the media preferred by the public in order to better understand several issues, including the high esteem that the new communication media hold.

In line with this, let us assume that we want to understand the quality of public opinion in a community of Europe about diverse issues during 2022. This network, with a certain configuration of the weights, but unspecified concepts, represents a social system with a certain structure (as the weights are given) that is in some sense general, as the values of the concepts can still vary. Variation of the concepts represents different scenarios of the social system (with a given structure, defined by the weights); e.g., the model of a European community considered in relation to three scenarios regarding the state of public opinion in relation to specific issues: 1: climate change, 2: situation of tourism in the community, 3: secondary effects of the COVID-19 vaccines. The weights of the network are determined by using a variety of scenarios; i.e., the network is trained with several scenarios, for which all possible values of the concepts are known. Once the network is trained, it can be used to infer unknown specific values of the concepts for other scenarios (following Aguilar et al. 2020; Sánchez et al. 2019; Terán y Aguilar, 2018); e.g., the state of public opinion in relation to the involvement of EU in the war in Ukraine. Even more, by exploring an appropriate set of scenarios, proofs about the state of certain concepts can be developed; e.g., that a majority of people in the community is against direct EU involvement in the war in Ukraine. The proof could be carried out for a subset of the possible configurations of a domain, several domains, or part of a domain, e.g., for the psycho-biological domain. Additionally, having an appropriate elaboration of the model would allow evaluating how polarized is the opinion of the community in relation to the involvement of EU in that war.

Diverse configurations of the MFCM can represent different modelers’ perspectives and assumptions, as well as various agents’ constructs, such as goals, interests, etc., allowing to deal with the above described drawbacks of MABS to cope with complexity of social systems.

5. Combined use of MABS and cognitive maps

The combined usage will give at least two levels of modeling: the inner, defined by the agents’ interaction concreted in a MABS, and the outer or contextual one, given by the MFCM. These will be the two last levels in the description given in 5.1. Interaction between these models occurs as the modeler interprets each model outputs and feedbacks the other. Ideally, we would have direct automatic feedback between these models.

5.1 Levels of description of the System

In order to contextually model a social system and investigate problems such as polarization, we suggest below five levels of description of the system. The first three levels are not directly associated to computational models, while levels four and five are descriptions that assist development of the computational models: MFCM and MABS, respectively. Each level gives context to the following one (the first gives context to the second, etc.). A lower level (e.g., 1. in relation to 2.) of description corresponds to a more general language, as suggested in Terán (2004). Each level must take into account the previous levels, especially the immediately superior level, which gives the most immediate context to it. This description is in line with the suggestions given in Terán (Idem). Each description makes certain assumptions and is shaped by the modeler’s perspective, which in part is coming from those actors given information to build the model. Assumptions and perspectives introduced in level of modeling i, i = 1, …, 6, can be called Assumptions-given in (i) and Perspectives-given in (i). At levels of description j, Assumption i = 1, 2, …, i are accumulated, and can be called Assumptions(j), as well as holistic Perspective(j) based on Perspectives-given in (i), i = 1, 2, .., i.  These assumptions and perspectives correspond to those defined in Terán (2004) as “abstraction-assumptions, design-assumptions, inference-assumptions, analysis-assumptions, interpretation-assumptions and application-assumptions”.

  1. Describe in natural language the system, including its relevant history, with emphasis in culture (practices, costumes, etc.) and behavior of individuals and groups relevant to the object of the study, e.g., from a historical-ontological perspective. Here, how the system has reached its actual situation is explained. This will give a global view of the society and the general form of behavior, problematics, conflicts, etc.
  2. Describe the diverse relevant domains given context to the system of interest in accordance with the study, e.g., political, economical, dominant actors, etc., and the relationships among them. Concrete specifications of these domains sets scenarios for the real system, i.e., possible configurations of it.
  3. Describe the particular social group of interest as part of the society explained above, in 1., and the domains given in 2., showing its particularities, e.g., culturally, in terms of interests, situation and social interaction of this group in relation with other groups in the whole society, in accordance to the problematic addressed in the study.
  4. Elaborate a cognitive map of the situation of the social group of interest, following the description given in 2 and 3. This is a description to be represented in a computational language, such as the MFCM tool developed by Contreras and Aguilar (2010).
  5. Describe the MABS model. The MABS model is then represented in a simulation language.
  6. The computational MFCM (or other cognitive map) and the MABS developed following 4. and 5. are then used to generate the virtual outputs and simulation study.

5.2 Possible combined uses of MFCM and MABS.

The MFCM (in general a cognitive or conceptual map) gives context to the MABS model (modeler’s assumptions and perspectives are added in the process, as indicated above), while the MABS model represents in detail the interaction of the agents’ considered in the MFCM for a specific scenario of this, as indicated in the levels of modeling given above. With this idea in mind, among the specific forms a combined usage of ABM and MFCM, we have:

i) Offering feedback from the MFCM to the MABS. A MABS in a certain configuration can be used to generate either directly or indirectly (e.g., with additional verification or manipulations) input for a simulation model. For example, in parallel to the model presented in Sánchez et al. (2019), where the domains social, biological-psychological, technological and state of the opinion are displayed, a MABS model can be developed to represent the interaction between social entities, such as people who receive information from the media, the media itself, and powerful actors who design the agenda setting of the media. This MABS model might use diverse methodologies, e.g., endorsements or BDI, to represent social interaction, or a higher level of interaction where actors share resources, on which they have interest, as in a System of Organized Action (see, e.g., SocLab models Terán and Sibertin-Blanc, 2020; Sibertin-Blanc et al., 2013). Constructs required as inputs for the model, e.g., goals, interests, values to define the endorsements schema, etc. could be deducted from the MFCM, as direct values of some concepts or functions (mathematical, logical, etc.) of the concepts. These operations could be defined by experts in the modeled domains (e.g., media owners, academics working in the area, etc.). Ideally, we would have an isomorphic relation between some variables of the MABS and variables of the MFCM – however, this is not the usual case –. In this process, the MABS is contextualized by the MFCM, whose modeling level also permits to identify modeler’s assumptions and perspectives. Also, in a narrative, and then in the MFCM, goal, interest, and other constructs can be explicitly represented, then varied and their consequence understood in order to feedback the MABS model.

ii) Giving feedback to the MFCM from the MABS. Inputs and outputs values of the MABS simulation can be used as an input to the MFCM, e.g., as a set of scenarios to train the network and determine a certain structure of the MFCM, or to determine a specific scenario/ configuration (where both, the weights and the concepts are known).

iii) Determining conditions of correspondence among the models. By simulating the MABS associated to certain scenarios of the MFCM, or, vice-verse, by determining the scenarios of MFCM related to certain MABS, the consistency among the two models and possible errors, omissions, etc. in one of the models can be detected, and then the corrections applied. Even more, this exercise can hopefully determine certain rules or conditions of correspondence among the MABS and the MFCM.

iv) Using a model to verify properties in the other model. Once certain correspondence among the models has been determined, we can use one of the models to help in determining properties of the other. For instance, a proof of a tendency in an MABS (this has been an important area of research, Terán, 2001; Terán et al. 2001; Edmonds et al., 2006) could be developed in a much easier form in the corresponding MFCM. For this, we need to characterize the set of configurations of the MFCM corresponding to the set of configurations of the MABS for which we want to perform the proof.

These possible combined uses of MFCM and MABS do not exhaust all potentials, and diverse other alternatives could appear in accordance with the needs in a particular study. Even more, automatic feedback between MFCM (or other cognitive or conceptual map) and MABS could be implemented in the future, to facilitate the mutual contributions between the two modeling approaches. This would cover modeling requirements the MABS in itself does not support at present.

5.3 A case: Modeling othering and polarization, the case of “children with virtually mediated culture”.

We outline a possible model that considers othering and polarization. In section 2 we described a society. In a society, as virtual groups become homogeneous in beliefs, motivations, intentions and behavior, certain sort of endogamy of ideas and opinions appear, constraining the variety and richness of perspectives from which people observe and judge others, making them generally less tolerant to others, more restrictive in accepting opinions and behavior of others, so less inclusive. This has diverse additional effects, for instance, increase of polarization between virtual groups regarding a diversity of themes. Problems such as polarization occur also in children with strong usage of virtual social networks (see, Prensky, 2001a, 2001b, 2009).

To investigate this problem and support the MABS, as a case, we suggest a MFCM with four levels (see Figure 1). The goal of the models (MFCM and MABS) would be to better understand the differences between the communities of children whose interaction is basically virtually mediated and the community of children whose interaction is face to face, or direct, people to people. In general, it is of interest to determine the state of othering and polarization for diverse configurations of the MFCM. As we explained above, there are clear differences between virtual and face to face interaction, consequently the upper layers in Figure 1 are the two possible niches of cultural acquisition (costumes, points of view, etc.), during life of people (ontogenesis), namely, the virtual mediated culture and the direct, face to face, cultural acquisition. These two layers involve interaction among diverse actors (e.g., people, media and powerful actors are present in layer 2). Layer 2 represents technological actors, while layer 1 represents social interaction, but both of them might involve other elements, if required. The third level represent those biological aspects related with behavior, which are created via culture: the psycho-biological level. Both levels, 1 and 2, affect the third layer, as emotions, reasoning, etc., are founded on people interaction and have a cultural base. Constructs of behavior such as goals, interests, desires, polarization, etc., appear and can be explicitly represented at this level. This third level, in turn, impacts on the overall state of the community, e.g., on the auto-generative capacity of the society, finally affecting global society/community’s othering and polarization, as our emotions, reasoning, etc., impact on our view point, on othering, etc. These last are variables defined in terms of the previous levels. In this model, the definition of concepts such as “othering” and “polarization” is crucial, and indicates basic modeling assumptions and perspective. Finally, the overall state of society/community impacts back on the cultural niches (layers 1 and 2).

In a specific situation, the whole interaction (1) of the society or community is divided between the two niches given by layers 1 and 2, a proportion of interaction frequency occurs as virtual communication, and the compliment (one minus the proportion of virtual interaction), occurs as direct, face to face, contact. This is represented in Figure 3 by the variable “Proportion of virtual interaction type”. Changes of this variable allows us to explore diverse configurations or scenarios of interaction, ranging from total virtual interaction (null direct contact) (the variable takes the value 1), to null virtual interaction (total direct contact) (the variable takes the value 0).

The four levels of MFCM

Figure 1. The four levels of the MFCM. The two alternative niches structuring the psycho-biology of people are at the top of the process. The overall state represents general measures such as the auto-generative character of a social system, and attitudes including othering and polarization.

Example of possible variables in some levels (Figure 1) are:

i) Face to face interaction, and ii) virtual interaction or technological: The next variables are candidates to be at these levels. Degree of:

  •  Coherence of the interaction (possible state: good, etc.);
  •  Identification of the others in the interaction (good or clear, etc.);
  •  Richness of the interaction (high or good, etc.);
  •  Truthfulness of the messages (fairness) (e.g., good: messages and communication are fair);
  •  Openness of the community (e.g., high: usually people is open to interact with others);
  •  Speed of the interaction (e.g.: low, medium, …);
  •  Intentioned influence and control of the communication by powerful actors (e.g., high, medium, low, ..);

iii) Psycho-biological level

  •  Reflection (state: good means that people question their experiences, and observed phenomena);
  • Closeness of interpretations, attitudes, desires, intentions, and plans (a high value means that people’s interpretations, etc., are not very different);
  •  Emotion and mood;
  •  Empathy;
  •  Addiction to virtual interaction;
  • Goal;
  •  Interest;
  •  Immediatism (propensity to do things quickly and constantly change focus of reasoning).

iv) Overall state of people and society:

  •  Auto-generative capacity of the society;
  •  Capacity of people to reflect about social situations (and autonomously look for solutions);
  •  Othering;
  •  Polarization; 

Concepts at each layer impacts concepts at the other layers. E.g., concepts of level three have a strong impact on concepts of the fourth layer, such as “polarization”, and “auto-generative character of the society”.

As indicated above, to understand the dynamics of the MFCM we can develop a wide range of scenarios, for instance, varying the switch “Proportion of virtual interaction” in the interval [0, 1], to explore a set of scenarios for which the degree of virtual interaction increases from 1 to 0, as the proportion of direct interaction decreases from 1 to 0 (the real case corresponds to an intermediate value between 1 and 0). These experiments will help us in understanding better the consequences of virtual mediated culture. Even when the outline of the model presented here might need some adjustments and improvements, the present proposal keeps its potential to reach this goal.

The MFCM will be useful to deal with many issues and questions of interest, for instance:

  • How social networks affect basic social attitudes such as: i) critical rationality (people’s habit for questioning and explaining their experience (issues/phenomena in their life)), ii) tolerance, iii) compromise with public well-being, and iv) othering and polarization
  •  How social networks affect social feelings, such as empathy.

The MABS model will be elaborated in accordance with the description of the MFCM indicated above. In particular, different values of the social constructs at levels 1 and 2 (e.g., goals and interests of the actors), and the corresponding state of layer 3 (e.g., Polarization), imply diverse MABS models.

The whole network of concepts, the particular network of concepts at each level, and the definition of each concept, offers a perspective of the modelers. Different modelers can develop these elements of the model differently. Assumptions can be identified also at each level. Both, perspectives and assumptions come from the modelers as well as from the theories, consult to experts to create the model, etc.. An specific model is not part of this essay, but rather a subject of future work.

6. Conclusion

Social simulation has been widely recognized as an alternative to study social systems, using diverse modeling tools, including MABS, which, however, present some limitations, like any other research tool. One of the deficiencies of MABS is their limitations to contextually modeling social systems; e.g., to suitably include the historical and political contexts or domains; difficulties to represent variation of agents’ constructs, e.g., goals and interest; and drawbacks to made explicit modeler’s assumptions and perspectives. In this paper, we have suggested to mutually complement MABS and MFCM, to overcome MABS drawbacks, to potentiate the usefulness of MABS to represent social systems.

We argue that the high level of the MFCM paradigm permits us to express different elements of the models such as the agents’ constructs (goals, interests, etc.), as well as the modelers assumptions and perspectives, as suggested in Terán (2004). Thus, MFCM facilitates the identification of the accumulated set of assumptions during the modeling process. Even more, diverse configurations of a MFCM can represent diverse modelers’ perspectives and assumptions, as well as diverse agents constructs, such as goals, interests, etc., allowing to deal with the above described complexity. This permits us to more realistically elaborate models of a wide diversity of social problems, e.g., polarization, and consequences of the influence of social networks in culture.

Among the forms MFCM and MABS complement each other we have identified the followings:  mutual feedbacking of variables and concepts between the MFCM and the MABS, determining conditions of correspondence among the models, what facilitate other modeling needs, e.g., using a model to verify properties in the other model (e.g., proofs required in a MABS could be carried out in a corresponding MFCM).

A case study was outlined to exemplify the problematic that can be addressed and the advantages of using MFCM to complement MABS: Modeling othering and polarization, the case of children with virtually mediated culture. Combined use of MFCM and MABS in this case will contribute to understand better the problems created by the high use of digital interaction, especially social networks, as described by Prensky (2001a, 2001b, 2009), given that virtual interaction has strong influence on our culture, impacting on ours myths, rites, perspectives, goals, interests, opinion, othering and polarization, etc. Characteristics of virtual communication, e.g., anonymity, significantly impacts on all these constructs, which, differently from natural interaction, have a strong potential to promote certain tendencies of such constructs, e.g., polarization or our opinions, because of several reasons, for instance, given that virtual environments usually create less reflexive groups, while emotional communication is poorer or lack deepness. It is difficult to represent all these dynamics in a MABS, but it can be alternatively expressed in a MFCM.

The purpose of the work was to give an outline of the proposal; future work will be conducted to wholly develop concrete study cases with complementary MABS and MFCM models.

References

Aguilar, J. (2005). A Survey about Fuzzy Cognitive Maps Papers. International journal of computational cognition 3 (2), pp. 27-33.

Aguilar, J. (2013) Different Dynamic Causal Relationship Approaches for Cognitive Maps”, Applied Soft Computing, Elsevier, 13(1), pp. 271–282.

Aguilar, J. (2016) “Multilayer Cognitive Maps in the Resolution of Problems using the FCM Designer Tool”, Applied Artificial Intelligence, 30 (7), pp. 720-743.

Aguilar J., Hidalgo J., Osuna F., Perez N.(2016) Multilayer Cognitive Maps to Model Problems”, Proc. IEEE World Congress on Computational Intelligence,  pp. 1547-1553, 2016.

Aguilar Jose, Yolmer Romero y OswaldoTerán (2020). “Analysis of the effect on the marketing of the sport product from the “par Conditio” principle in Latin American football and baseball competitions”. Submitted to International Journal of Knowledge-Based and Intelligent Engineering Systems.

Contreras, J. Aguilar, J. (2010). “The FCM Designer Tool”. Fuzzy Cognitive Maps: Advances in Theory, Methodologies, Tools and Application (Ed. M. Glykas), Springer, pp. 71-88, 2010.

Edmonds, B. and Hales, D. and Lessard-Phillips, L.(2020). Simulation Models of Ethnocentrism and Diversity: An Introduction to the Special Issue. Social Science Computer Review. Volume 38 Issue 4, August 2020, 359–364, https://journals.sagepub.com/toc/ssce/38/4

Edmonds Bruce, Oswaldo Terán y Grary Polhill (2006). “To the Outer Limits and Beyond –characterising the envelope of social simulation trajectories”, Proceedings of theThe First World Congress on Social Simulation WCSS”, Kyoto, 21-25 Agosto, 2006.

Giabbanelli Philippe, Steven Gray and Payam Aminpour (2017), Combining fuzzy cognitive maps with agent-based modeling: Frameworks and pitfalls of a powerful hybrid modeling approach to understand human-environment interactions, Environmental Modeling and Software, September 2017,  95:320-325 DOI:10.1016/j.envsoft.2017.06.040

Kosko, B. (1986). Fuzzy Cognitive Maps. International Journal of Man-Machine Studies 24, pp. 65-75.

Perozo Niriaska, Jose Aguilar, Oswaldo Terán y Heidi Molina (2013). A Verification Method for MASOES, IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, Vol 43, num 1, February, pp. 64-76,  ISBN: 1083-4419. DOI: 10.1109/TSMCB.2012.2199106

Prensky, Marc (2001a). Digital Natives, Digital Immigrants Part 1, On the Horizon, Vol. 9, No. 5, September, pp 1-6. DOI: 10.1108/10748120110424816

Prensky, Marc (2001b). Do They Really Think Differently? Digital Natives, Digital Immigrants Part 2, On the Horizon, Vol. 9, No. 6, October 2001, pp 1-6. DOI: 10.1108/10748120110424843

Prensky, Marc (2009). “H. Sapiens Digital: From Digital Immigrants and Digital Natives to Digital Wisdom,” Innovate: Journal of Online Education: Vol. 5 : Issue 3, Article 1. Available at: https://nsuworks.nova.edu/innovate/vol5/iss3/1

Puerto E., Aguilar J., Chávez D., López C. (2019) Using Multilayer Fuzzy Cognitive Maps to Diagnose Autism Spectrum Disorder, Applied Soft Computing Journal, 75, pp. 58–71.

Rocco Paolillo, and Wander Jager (2020). Simulating Acculturation Dynamics Between Migrants and Locals in Relation to Network Formation, Social Science Computer Review. Volume 38 Issue 4, August 2020, pp. 365–386. https://journals.sagepub.com/toc/ssce/38/4

Sánchez Hebert, Jose Aguilar, Oswaldo Terán, José Gutiérrez de Mesa (2019). “Modeling the process of shaping the public opinion through Multilevel Fuzzy Cognitive Maps”, Applied Soft Computing, Volume 85. https://doi.org/10.1016/j.asoc.2019.105756.

Sibertin-Blanc, C., Roggero, P., Adreit, F., Baldet, B., Chapron, P., El-Gemayel, J., Mailliard, M., and Sandri, S. (2013). “SocLab: A Framework for the Modeling, Simulation and Analysis of Power in Social Organizations”, Journal of Artificial Societies and Social Simulation (JASSS), 16(4). http://jasss.soc.surrey.ac.uk/

Terán Oswaldo (2001). Emergent Tendencies in Multi-Agent Based Simulations Using Constraint-Based Methods to Effect Practical Proofs Over Finite Subsets of Simulation Outcomes, Doctoral Thesis, Centre for Policy Modelling, Manchester Metropolitan University, 2001.

Terán Oswaldo  (2004). Understanding MABS and Social Simulation: Switching Between Languages in a Hierarchy of Levels, Journal of Artificial Societies and Social Simulation vol. 7, no. 4. http://jasss.soc.surrey.ac.uk/7/4/5.html

Terán Oswaldo, Edmonds Bruce and Steve Wallis (2001) “Mapping the Envelope of Social Simulation Trajectories”, Lecture Notes in Artificial Intelligence (Subserie de Lecture Notes in Computer Science): MABS, Volume 1979, pp. 229-243, Springer, Alemania, 2001

Terán Oswaldo y Jose Aguilar (2018). “Modelo del proceso de influencia de los medios de comunicación social en la opinión pública”, EDUCERE, 21 (71), Universidad de Los Andes, Mérida, Venezuela. https://www.redalyc.org/toc.oa?id=356&numero=56002

Terán Oswaldo and Christophe Sibertin-Blanc (2020). Impact on Cooperation of altruism, tenacity, and the need of a resource,  accepted in IEEE Transactions on Computational Social Systems. DOI: 10.1109/TCSS.2021.3136821.

Annex. Fuzzy Cognitive Maps (FCM) and Muti-Fuzzy Cognitive Maps (MFCM).

Cognitive map theory is based on symbolic representation for the description of a system. It uses information, knowledge and experience, to describe particular domains using concepts (variables, states, inputs, outputs), and the relationships between them (Aguilar 2005, 2013, 2016). Cognitive maps can be understood as directed graphs, whose arcs represent causal connections between the nodes (concepts), used to denote knowledge. An arc with a positive sign (alternatively, negative sign), going from node X to node Y means that X (causally) increases (alternatively, decreases) Y. Cognitive maps are graphically represented: concepts are connected by arcs through a connection matrix. In the connection matrix, the i-nth line represents the weight of the arc connections directed outside of the  concept. The i-nth column lists the arcs directed toward , i.e., those affecting .

The conceptual development of FCMs rests on the definition and dynamic of concepts and relationships created by the theory of fuzzy sets (Kosko, 1986). FCM can describe any system using a causality-based model (that indicates positive or negative relationships), which takes fuzzy values and is dynamic (i.e., the effect of a change in one concept/node affects other nodes, which then affect further nodes). This structure establishes the forward and backward propagation of causality (Aguilar, 2005, 2013, 2016). Thus, the concepts and relations can be represented as fuzzy variables (expressed in linguistic terms), such as “Almost Always”, “Always”, “Normally”, “Some (see Figure 2).

The value of a concept depends on its previous iterations, following the equation (1):

Screenshot 2022-05-23 at 15.10.24

Cm(i+1) stands for the value of the concept in the next iteration after the iteration i, N indicates the number of concepts, wm,k represents the value of the causal relationship between the concept Ck and the concept Cm, and S(y) is a function used to normalize the value of the concept.

ot-fig2

Figure 2. Example of an FCM (taken from Sánchez et al., 2019).

MFCM is an extension of the FCM. It is a FCM with several layers where each layer represents a set of concepts that define a specific domain of a system. To construct a MFCM, the previous equation for calculating the current status of the concepts of a FCM is modified, to describe the relationships between different layers (Aguilar, 2016):

Where F(p) is the input function generated by the relationships among different layers, and p is the set of concepts of the other layers that impact this concept. Thus, the update function of the concepts has two parts. The first part, the classic, calculates the value of  concept in iteration  based on the values of concepts in the previous iteration . All these concepts belong to the same layer where the “m” concept belongs. The second part is the result of the causal relationship between the concepts in different levels of the MFCM.


Terán, O. & Aguilar, J. (2022) Towards contextualized social simulation: Complementary use of Multi-Fuzzy Cognitive Maps and MABS. Review of Artificial Societies and Social Simulation, 25th May 2022. https://rofasss.org/2022/05/25/MFCM-MABS


© The authors under the Creative Commons’ Attribution-NoDerivs (CC BY-ND) Licence (v4.0)

Discussions on Qualitative & Quantitative Data in the Context of Agent-Based Social Simulation

By Peer-Olaf Siebers, in collaboration with Kwabena Amponsah, James Hey, Edmund Chattoe-Brown and Melania Borit

Motivation

1.1: Some time ago, I had several discussions with my PhD students Kwabena Amponsah and James Hey (we are all computer scientists, with a research interest in multi-agent systems) on the topic of qualitative vs. quantitative data in the context of Agent-Based Social Simulation (ABSS). Our original goal was to better understand the role of qualitative vs. quantitative data in the life cycle of an ABSS study. But as you will see later, we conquered more ground during our discussions.

1.2: The trigger for these discussions came from numerous earlier discussions within the RAT task force (Sebastian Achter, Melania Borit, Edmund Chattoe-Brown, and Peer-Olaf Siebers) on the topic, while we were developing the Rigour and Transparency – Reporting Standard (RAT-RS). The RAT-RS is a tool to improve the documentation of data use in Agent-Based Modelling (Achter et al 2022). During our RAT-RS discussions we made the observation that when using the terms “qualitative data” and “quantitative data” in different phases of the ABM simulation study life cycle these could be interpreted in different ways, and we felt difficult to clearly state the definition/role of these different types of data in the different contexts that the individual phases within the life cycle represent. This was aggravated by the competing understandings of the terminology within different domains (from social and natural sciences) that form the field of social simulation.

1.3: As the ABSS community is a multi-disciplinary one, often doing interdisciplinary research, we thought that we should share the outcome of our discussions with the community. To demonstrate the different views that exist within the topic area, we ask some of our friends from the social simulation community to comment on our philosophical discussions. And we were lucky enough to get our RAT-RS colleagues Edmund Chattoe-Brown and Melania Borit on board who provided critical feedback and their own view of things. In the following we provide a summary of the overall discussion Each of the following paragraph contains summaries of the initial discussion outcomes, representing the computer scientists’ views, followed by some thoughts provided by our two friends from the social simulation community (Borit’s in {} brackets and italic and Chattoe-Brown’s in [] brackets and bold), both commenting on the initial discussion outcomes of the computer scientists. To see the diverse backgrounds of all the contributors and perhaps to better understand their way of thinking and their arguments, I have added some short biographies of all contributors at the end of this Research Note. To support further (public) discussions I have numbered the individual paragraphs to make it easier to refer back to them. 

Terminology

2.1: As a starting point for our discussions I searched the internet for some terminology related to the topic of “data”. Following is a list of initial definitions of relevant terms [1]. First, the terms qualitative data and quantitative data, as defined by the Australian Bureau of Statistics: “Qualitative data are measures of ‘types’ and may be represented by a name, symbol, or a number code. They are data about categorical variables (e.g. what type). Quantitative data are measures of values or counts and are expressed as numbers. They are data about numeric variables (e.g. how many; how much; or how often).” (Australian Bureau of Statistics 2022) [Maybe don’t let a statistics unit define qualitative research? This has a topic that is very alien to us but argues “properly” about the role of different methods (Helitzer-Allen and Kendall 1992). “Proper” qualitative researchers would fiercely dispute this. It is “quantitative imperialism”.].

2.2: What might also help for this discussion is to better understand the terms qualitative data analysis and quantitative data analysis. Qualitative data analysis refers to “the processes and procedures that are used to analyse the data and provide some level of explanation, understanding, or interpretation” (Skinner et al 2021). [This is a much less contentious claim for qualitative data – and makes the discussion of the Australian Bureau of Statistics look like a distraction but a really “low grade” source in peer review terms. A very good one is Strauss (1987).] These methods include content analysis, narrative analysis, discourse analysis, framework analysis, and grounded theory and the goal is to identify common patterns. {These data analysis methods connect to different types of qualitative research: phenomenology, ethnography, narrative inquiry, case study research, or grounded theory. The goal of such research is not always to identify patterns – see (Miles and Huberman 1994): e.g., making metaphors, seeing plausibility, making contrasts/comparisons.} [In my opinion some of these alleged methods are just empire building or hot air. Do you actually need them for your argument?] These types of analysis must therefore use qualitative inputs, broadening the definition to include raw text, discourse and conceptual frameworks.

2.3 When it comes to quantitative data analysis “you are expected to turn raw numbers into meaningful data through the application of rational and critical thinking. Quantitative data analysis may include the calculation of frequencies of variables and differences between variables.” (Business Research Methodology 2022) {One does the same in qualitative data analysis – turns raw words (or pictures etc.) into meaningful data through the application of interpretation based on rational and critical thinking. In quantitative data analysis you usually apply mathematical/statistical models to analyse the data.}. While the output of quantitative data analysis can be used directly as input to a simulation model, the output of qualitative data analysis still needs to be translated into behavioural rules to be useful (either manually or through machine learning algorithms). {What is meant by “translated” in this specific context? Do we need this kind of translation only for qualitative data or also for quantitative data? Is there a difference between translation methods of qualitative and quantitative data?} [That seems pretty contentious too. It is what is often done, true, but I don’t think it is a logical requirement. I guess you could train a neural net using “cases” or design some other simple “cognitive architecture” from the data. Would this (Becker 1953), for example, best be modelled as “rules” or as some kind of adaptive process? But of course you have to be careful that “rule” is not defined so broadly that everything is one or it is true by definition. I wonder what the “rules” are in this: Chattoe-Brown (2009).]

2.4: Finally, let’s have a quick look at the difference between “data” and “evidence”. For this, we found the following distinction by Wilkinson (2022) helpful: “… whilst data can exist on its own, even though it is essentially meaningless without context, evidence, on the other hand, has to be evidence of or for something. Evidence only exists when there is an opinion, a viewpoint or an argument.”

Hypothesis

3.1: The RAT-RS divides the simulation life cycle into five phases, in terms of data use: model aim and context, conceptualisation, operationalisation, experimentation, and evaluation (Siebers et al 2019). We started our discussion by considering the following hypothesis: The outcome of qualitative data analysis is only useful for the purpose of conceptualisation and as a basis for producing quantitative data. It does not have any other roles within the ABM simulation study life cycle. {Maybe this hypothesis in itself has to be discussed. Is it so that you use only numbers in the operationalisation phase? One can write NetLogo code directly from qualitative data, without numbers.} [Is this inevitable given the way ABM works? Agents have agency and therefore can decide to do things (and we can only access this by talking to them, probably “open ended”). A statistical pattern – time series or correlation – has no agency and therefore cannot be accessed “qualitatively” – though we also sometimes mean by “qualitative” eyeballing two time series rather than using some formal measure of tracking. I guess that use would >>not<< be relevant here.]

Discussion

4.1: One could argue that qualitative data analysis provides causes for behaviour (and indications about their importance (ranking); perhaps also the likelihood of occurrence) as well as key themes that are important to be considered in a model. All sounds very useful for the conceptual modelling phase. The difficulty might be to model the impact (how do we know we model it correctly and at the right level), if that is not easily translatable into a quantitative value but requires some more (behavioural) mechanistic structures to represent the impact of behaviours. [And, of course, there is a debate in psychology (with some evidence on both sides) about the extent to which people are able to give subjective accounts we can trust (see Hastorf and Cantril (1954).] This might also provide issues when it comes to calibration – how does one calibrate qualitative data? {Triangulation.} One random idea we had was that perhaps fuzzy logic could help with this. More brainstorming and internet research is required to confirm that this idea is feasible and useful. [A more challenging example might be ethnographic observation of a “neighbourhood” in understanding crime. This is not about accessing the cognitive content of agents but may well still contribute to a well specified model. It is interesting how many famous models – Schelling, Zaller-Deffuant – actually have no “real” environment.]

4.2: One could also argue that what starts (or what we refer to initially) as qualitative data always ends up as quantitative data, as whatever comes out of the computer are numbers. {This is not necessarily true. Check  the work on qualitative outputs using Grounded Theory by Neumann (2015).} Of course this is a question related to the conceptual viewpoint. [Not convinced. It sounds like all sociology is actually physics because all people are really atoms. Formally, everything in computers is numbers because it has to be but that isn’t the same as saying that data structures or whatever don’t constitute a usable and coherent level of description: We “meet” and “his” opinion changes “mine” and vice versa. Somewhere, that is all binary but you can read the higher level code that you can understand as “social influence” (whatever you may think of the assumptions). Be clear whether this (like the “rules” claim) is a matter of definition – in which case it may not be useful (even if people are atoms we have no idea of how to solve the “atomic physics” behind the Prisoner’s Dilemma) or an empirical one (in which case some models may just prove it false). This (Beltratti et al 1996) contains no “rules” and no “numbers” (except in the trivial sense that all programming does).]

4.3: Also, an algorithm is expressed in code and can only be processed numerically, so it can only deliver quantitative data as output. These can perhaps be translated into qualitative concepts later. A way of doing this via the use of grounded theory is proposed in Neumann and Lotzmann (2016). {This refers to the same idea as my previous comment.} [Maybe it is “safest” to discuss this with rules because everyone knows those are used in ABM. Would it make sense to describe the outcome of a non trivial set of rules – accessed for example like this: Gladwin (1989) – as either “quantitative” or “numbers?”]

4.4: But is it true that data delivered as output is always quantitative? Let’s consider, for example, a consumer marketing scenario, where we define stereotypes (shopping enthusiast; solution demander; service seeker; disinterested shopper; internet shopper) that can change over time during a simulation run (Siebers et al 2010). These stereotypes are defined by likelihoods (likelihood to buy, wait, ask for help, and ask for refund). So, during a simulation run an agent could change its stereotype (e.g. from shopping enthusiast to disinterested shopper), influenced by the opinion of others and their own previous experience. So, at the beginning of the simulation run the agent can have a different stereotype compared to the end. Of course we could enumerate the five different stereotypes, and claim that the outcome is numeric, but the meaning of the outcome would be something qualitative – the stereotype related to that number. To me this would be a qualitative outcome, while the number of people that change from one stereotype to another would be a quantitative outcome. They would come in a tandem. {So, maybe the problem is that we don’t yet have the right ways of expressing or visualising qualitative output?} [This is an interesting and grounded example but could it be easily knocked down because everything is “hard coded” and therefore quantifiable? You may go from one shopper type to another – and what happens depends on other assumptions about social influence and so on – but you can’t “invent” your own type. Compare something like El Farol (Arthur 1994) where agents arguably really can “invent” unique strategies (though I grant these are limited to being expressed in a specified “grammar”).]

4.5: In order to define someone’s stereotype we would use numerical values (likelihood = proportion). However, stereotypes refer to nominal data (which refers to data that is used for naming or labelling variables, without any quantitative value). The stereotype itself would be nominal, while the way one would derive the stereotype would be numerical. Figure 1 illustrates a case in which the agent moves from the disinterested stereotype to the enthusiast stereotype. [Is there a potential confusion here between how you tell an agent is a type – parameters in the code just say so – and how you say a real person is a type? Everything you say about the code still sounds “quantitative” because all the “ingredients” are.]

Figure 1: Enthusiastic and Disinterested agent stereotypes

4.6: Let’s consider a second example, related to the same scenario: The dynamics over time to get from an enthusiastic shopper (perhaps via phases) to a disinterested shopper. This is represented as a graph where the x-axis represents time and the y-axis stereotypes (categorical data). If you want to take a quantitative perspective on the outcome you would look at a specific point in time (state of the system) but to take a qualitative perspective of the outcome, you would look at the pattern that the curve represents over the entire simulation runtime. [Although does this shade into the “eyeballing” sense of qualitative rather than the “built from subjective accounts” sense? Another way to think of this issue is to imagine “experts” as a source of data. We might build an ABM based on an expert perception of say, how a crime gang operates. That would be qualitative but not just individual rules: For example, if someone challenges the boss to a fight and loses they die or leave. This means the boss often has no competent potential successors.]

4.7: So, the inputs (parameters, attributes) to get the outcome are numeric, but the outcome itself in the latter case is not. The outcome only makes sense once it’s put into the qualitative context. And then we could say that the simulation produces some qualitative outputs. So, does the fact that data needs to be seen in a context make it evidence, i.e. do we only have quantitative and qualitative evidence on the output side? [Still worried that you may not be happy equating qualitative interview data with qualitative eyeballing of graphs. Mixes up data collection and analysis? And unlike qualitative interviews you don’t have to eyeball time series. But the argument of qualitative research is you can’t find out some things any other way because, to run a survey say, or an experiment, you already have to have a pretty good grasp of the phenomenon.]

4.8: If one runs a marketing campaign that will increase the number of enthusiastic shoppers. This can be seen as qualitative data as it is descriptive of how the system works rather than providing specific values describing the performance of a system. You could also equally express this algebraic terms which would make it quantitative data. So, it might be useful to categorise quantitative data to make the outcome easier to understand. [I don’t think this argument is definitely wrong – though I think it may be ambiguous about what “qualitative” means – but I think it really needs stripping down and tightening. I’m not completely convinced as a new reader that I’m getting at the nub of the argument. Maybe just one example in detail and not two in passing?]

Outcome

5.1: How we understand things and how the computer processes things are two different things. So, in fact qualitative data is useful for the conceptualisation and for describing experimentation and evaluation output, and needs to be translated into numerical data or algebraic constructs for the operationalisation. Therefore, we can reject our initial hypothesis, as we found more places where qualitative data can be useful. [Yes, and that might form the basis for a “general” definition of qualitative that was not tied to one part of the research process but you would have to be clear that’s what you were aiming at and not just accidentally blurring two different “senses” of qualitative.]

5.2: In the end of the discussion we picked up the idea of using Fuzzy Logic. Could perhaps fuzzy logic be used to describe qualitative output, as it describes a degree of membership to different categories? An interesting paper to look at in this context would be Sugeno and Yasukawa (1993). Also, a random idea that was mentioned is if there is potential in using “fuzzy logic in reverse”, i.e. taking something that is fuzzy, making it crisp for the simulation, and making it fuzzy again for presenting the result. However, we decided to save this topic for another discussion. [Devil will be in the detail. Depends on exactly what assumptions the method makes. Devil’s advocate: What if qualitative research is only needed for specification – not calibration or validation – but it doesn’t follow from this that that use is “really” quantitative? How intellectually unappealing is that situation and why?]

Conclusion

6.1: The purpose of this Research Note is really to stimulate you to think about, talk about, and share your ideas and opinions on the topic! What we present here is a philosophical impromptu discussion of our individual understanding of the topic, rather than a scientific debate that is backed up by literature. We still thought it is worthwhile to share this with you, as you might stumble across similar questions. Also, we don’t think we have found the perfect answers to the questions yet. So we would like to invite you to join the discussion and leave some comments in the chat, stating your point of view on this topic. [Is the danger of discussing these data types “philosophically”? I don’t know if it is realistic to use examples directly from social simulation but for sure examples can be used from social science generally. So here is a “quantitative” argument from quantitative data: “The view that cultural capital is transmitted from parents to their children is strongly supported in the case of pupils’ cultural activities. This component of pupils’ cultural capital varies by social class, but this variation is entirely mediated by parental cultural capital.” (Sullivan 2001). As well as the obvious “numbers” (social class by a generally agreed scheme) there is also a constructed “measure” of cultural capital based on questions like “how many books do you read in a week?” Here is an example of qualitative data from which you might reason: “I might not get into Westbury cos it’s siblings and how far away you live and I haven’t got any siblings there and I live a little way out so I might have to go on a waiting list … I might go to Sutton Boys’ instead cos all my mates are going there.” (excerpt from Reay 2002). As long as this was not just a unique response (but was supported by several other interviews) one would add to one’s “theory” of school choice: 1) Awareness of the impact of the selection system (there is no point in applying here whatever I may want) and 2) The role of networks in choice: This might be the best school for me educationally but I won’t go because I will be lonely.]

Biographies of the authors

Peer-Olaf Siebers is an Assistant Professor at the School of Computer Science, University of Nottingham, UK. His main research interest is the application of Computer Simulation and Artificial Intelligence to study human-centric and coupled human-natural systems. He is a strong advocate of Object-Oriented Agent-Based Social Simulation and is advancing the methodological foundations. It is a novel and highly interdisciplinary research field, involving disciplines like Social Science, Economics, Psychology, Geography, Operations Research, and Computer Science.

Kwabena Amponsah is a Research Software Engineer working for the Digital Research Service, University of Nottingham, UK. He completed his PhD in Computer Science at Nottingham in 2019 by developing a framework for evaluating the impact of communication on performance in large-scale distributed urban simulations.

James Hey is a PhD student at the School of Computer Science, University of Nottingham, UK. In his PhD he investigates the topic of surrogate optimisation for resource intensive agent based simulation of domestic energy retrofit uptake with environmentally conscious agents. James holds a Bachelor degree in Economics as well as a Master degree in Computer Science.

Edmund Chattoe-Brown is a lecturer in Sociology, School of Media, Communication and Sociology, University of Leicester, UK. His career has been interdisciplinary (including Politics, Philosophy, Economics, Artificial Intelligence, Medicine, Law and Anthropology), focusing on the value of research methods (particularly Agent-Based Modelling) in generating warranted social knowledge. His aim has been to make models both more usable generally and particularly more empirical (because the most rigorous social scientists tend to be empirical). The results of his interests have been published in 17 different peer reviewed journals across the sciences to date. He was funded by the project “Towards Realistic Computational Models Of Social Influence Dynamics” (ES/S015159/1) by the ESRC via ORA Round 5.

Melania Borit is an interdisciplinary researcher and the leader of the CRAFT Lab – Knowledge Integration and Blue Futures at UiT The Arctic University of Norway. She has a passion for knowledge integration and a wide range of interconnected research interests: social simulation, agent-based modelling; research methodology; Artificial Intelligence ethics; pedagogy and didactics in higher education, games and game-based learning; culture and fisheries management, seafood traceability; critical futures studies.

References

Achter S, Borit M, Chattoe-Brown E, and Siebers PO (2022) RAT-RS: a reporting standard for improving the documentation of data use in agent-based modelling. International Journal of Social Research Methodology, DOI: 10.1080/13645579.2022.2049511

Australian Bureau of Statistics (2022) Statistical Language > Qualitative and Quantitative data. https://www.abs.gov.au/websitedbs/D3310114.nsf/Home/Statistical+Language (last accessed 05/05/2022)

Arthur WB (1994) Inductive reasoning and bounded rationality. The American Economic Review, 84(2), pp.406-411. https://www.jstor.org/stable/pdf/2117868.pdf

Becker HS (1953). Becoming a marihuana user. American Journal of Sociology, 59(3), pp.235-242. https://www.degruyter.com/document/doi/10.7208/9780226339849/pdf

Beltratti A, Margarita S, and Terna P (1996) Neural Networks for Economic and Financial Modelling. International Thomson Computer Press.

Business Research Methodology (2022) Quantitative Data Analysis. https://research-methodology.net/research-methods/data-analysis/quantitative-data-analysis/ (last accessed 05/05/2022)

Chattoe-Brown E (2009) The social transmission of choice: a simulation with applications to hegemonic discourse. Mind & Society, 8(2), pp.193-207. DOI: 10.1007/s11299-009-0060-7

Gladwin CH (1989) Ethnographic Decision Tree Modeling. SAGE Publications.

Hastorf AH and Cantril H (1954) They saw a game; a case study. The Journal of Abnormal and Social Psychology, 49(1), pp.129–134.

Helitzer-Allen DL and Kendall C (1992) Explaining differences between qualitative and quantitative data: a study of chemoprophylaxis during pregnancy. Health Education Quarterly, 19(1), pp.41-54. DOI: 10.1177%2F109019819201900104

Miles MB and Huberman AM (1994) . Qualitative Data Analysis: An Expanded Sourcebook. Sage

Neumann M (2015) Grounded simulation. Journal of Artificial Societies and Social Simulation, 18(1)9. DOI: 10.18564/jasss.2560

Neumann M and Lotzmann U (2016) Simulation and interpretation: a research note on utilizing qualitative research in agent based simulation. International Journal of Swarm Intelligence and Evolutionary Computing 5/1.

Reay D (2002) Shaun’s Story: Troubling discourses of white working-class masculinities. Gender and Education, 14(3), pp.221-234. DOI: 10.1080/0954025022000010695

Siebers PO, Achter S, Palaretti Bernardo C, Borit M, and Chattoe-Brown E (2019) First steps towards RAT: a protocol for documenting data use in the agent-based modeling process (Extended Abstract). Social Simulation Conference 2019 (SSC 2019), 23-27 Sep, Mainz, Germany.

Siebers PO, Aickelin U, Celia H and Clegg C (2010) Simulating customer experience and word-of-mouth in retail: a case study. Simulation: Transactions of the Society for Modeling and Simulation International, 86(1) pp. 5-30. DOI: 10.1177%2F0037549708101575

Skinner J, Edwards A and Smith AC (2021) Qualitative Research in Sport Management – 2e, p171. Routledge.

Strauss AL (1987). Qualitative Analysis for Social Scientists. Cambridge University Press.

Sugeno M and Yasukawa T (1993) A fuzzy-logic-based approach to qualitative modeling. IEEE Transactions on Fuzzy Systems, 1(1), pp.7-31.

Sullivan A (2001) Cultural capital and educational attainment. Sociology 35(4), pp.893-912. DOI: 10.1017/S0038038501008938

Wilkinson D (2022) What’s the difference between data and evidence? Evidence-based practice. https://oxford-review.com/data-v-evidence/ (last accessed 05/05/2022)


Notes

[1] An updated set of the terminology, defined by the RAT task force in 2022, is available as part of the RAT-RS in Achter et al (2022) Appendix A1.


Peer-Olaf Siebers, Kwabena Amponsah, James Hey, Edmund Chattoe-Brown and Melania Borit (2022) Discussions on Qualitative & Quantitative Data in the Context of Agent-Based Social Simulation. Review of Artificial Societies and Social Simulation, 16th May 2022. https://rofasss.org/2022/05/16/Q&Q-data-in-ABM


© The authors under the Creative Commons’ Attribution-NoDerivs (CC BY-ND) Licence (v4.0)

If you want to be cited, calibrate your agent-based model: A Reply to Chattoe-Brown

By Marijn A. Keijzer

This is a reply to a previous comment, (Chattoe-Brown 2022).

The social simulation literature has called on its proponents to enhance the quality and realism of their contributions through systematic validation and calibration (Flache et al., 2017). Model validation typically refers to assessments of how well the predictions of their agent-based models (ABMs) map onto empirically observed patterns or relationships. Calibration, on the other hand, is the process of enhancing the realism of the model by parametrizing it based on empirical data (Boero & Squazzoni, 2005). We would expect that presenting a validated or calibrated model serves as a signal of model quality, and would thus be a desirable characteristic of a paper describing an ABM.

In a recent contribution to RofASSS, Edmund Chattoe-Brown provocatively argued that model validation does not bear fruit for researchers interested in boosting their citations. In a sample of articles from JASSS published on opinion dynamics he observed that “the sample clearly divides into non-validated research with more citations and validated research with fewer” (Chattoe-Brown, 2022). Well-aware of the bias and limitations of the sample at hand, Chattoe-Brown calls on refutation of his hypothesis. An analysis of the corpus of articles in Web of Science, presented here, could serve that goal.

To test whether there exists an effect of model calibration and/or validation on the citation counts of papers, I compare citation counts of a larger number of original research articles on agent-based models published in the literature. I extracted 11,807 entries from Web of Science by searching for items that contained the phrases “agent-based model”, “agent-based simulation” or “agent-based computational model” in its abstract.[1] I then labeled all items that mention “validate” in its abstract as validated ABMs and those that mention “calibrate” as calibrated ABMs. This measure if rather crude, of course, as descriptions containing phrases like “we calibrated our model” or “others should calibrate our model” are both labeled as calibrated models. However, if mentioning that future research should calibrate or validate the model is not related to citations counts (which I would argue it indeed is not), then this inaccuracy does not introduce bias.

The shares of entries that mention calibration or validation are somewhat small. Overall, just 5.62% of entries mention validation, 3.21% report a calibrated model and 0.65% fall in both categories. The large sample size, however, will still enable the execution of proper statistical analysis and hypothesis testing.

How are mentions of calibration and validation in the abstract related to citation counts at face value? Bivariate analyses show only minor differences, as revealed in Figure 1. In fact, the distribution of citations for validated and non-validated ABMs (panel A) is remarkably similar. Wilcoxon tests with continuity correction—the nonparametric version of the simple t test—corroborate their similarity (W = 3,749,512, p = 0.555). The differences in citations between calibrated and non-calibrated models appear, albeit still small, more pronounced. Calibrated ABMs are cited slightly more often (panel B), as also supported by a bivariate test (W = 1,910,772, p < 0.001).

Picture 1

Figure 1. Distributions of number of citations of all the entries in the dataset for validated (panel A) and calibrated (panel B) ABMs and their averages with standard errors over years (panels C and D)

Age of the paper might be a more important determinant of citation counts, as panels C and D of Figure 1 suggest. Clearly, the age of a paper should be important here, because older papers have had much more opportunity to get cited. In particular, papers younger than 10 years seem to not have matured enough for its citation rates to catch up to older articles. When comparing the citation counts of purely theoretical models with calibrated and validated versions, this covariate should not be missed, because the latter two are typically much younger. In other words, the positive relationship between model calibration/validation and citation counts could be hidden in the bivariate analysis, as model calibration and validation are recent trends in ABM research.

I run a Poisson regression on the number of citations as explained by whether they are validated and calibrated (simultaneously) and whether they are both. The age of the paper is taken into account, as well as the number of references that the paper uses itself (controlling for reciprocity and literature embeddedness, one might say). Finally, the fields in which the papers have been published, as registered by Web of Science, have been added to account for potential differences between fields that explains both citation counts and conventions about model calibration and validation.

Table 1 presents the results from the four models with just the main effects of validation and calibration (model 1), the interaction of validation and calibration (model 2) and the full model with control variables (model 3).

Table 1. Poisson regression on the number of citations

# Citations
(1) (2) (3)
Validated -0.217*** -0.298*** -0.094***
(0.012) (0.014) (0.014)
Calibrated 0.171*** 0.064*** 0.076***
(0.014) (0.016) (0.016)
Validated x Calibrated 0.575*** 0.244***
(0.034) (0.034)
Age 0.154***
(0.0005)
Cited references 0.013***
(0.0001)
Field included No No Yes
Constant 2.553*** 2.556*** 0.337**
(0.003) (0.003) (0.164)
Observations 11,807 11,807 11,807
AIC 451,560 451,291 301,639
Note: *p<0.1; **p<0.05; ***p<0.01

The results from the analyses clearly suggest a negative effect of model validation and a positive effect of model calibration on the likelihood of being cited. The hypothesis that was so “badly in need of refutation” (Chattoe-Brown, 2022) will remain unrefuted for now. The effect does turn positive, however, when the abstract makes mention of calibration as well. In both the controlled (model 3) and uncontrolled (model 2) analyses, combining the effects of validation and calibration yields a positive coefficient overall.[2]

The controls in model 3 substantially affect the estimates from the three main factors of interest, while remaining in expected directions themselves. The age of a paper indeed helps its citation count, and so does the number of papers the item cites itself. The fields, furthermore, take away from the main effects somewhat, too, but not to a problematic degree. In an additional analysis, I have looked at the relationship between the fields and whether they are more likely to publish calibrated or validated models and found no substantial relationships. Citation counts will differ between fields, however. The papers in our sample are more often cited in, for example, hematology, emergency medicine and thermodynamics. The ABMs in the sample coming from toxicology, dermatology and religion are on the unlucky side of the equation, receiving less citations on average. Finally, I have also looked at papers published in JASSS specifically, due to the interest of Chattoe-Brown and the nature of this outlet. Surprisingly, the same analyses run on the subsample of these papers (N=376) showed a negative relationship between citation counts and model calibration/validation. Does the JASSS readership reveal its taste for artificial societies?

In sum, I find support for the hypothesis of Chattoe-Brown (2022) on the negative relationship between model validation and citations counts for papers presenting ABMs. If you want to be cited, you should not validate your ABM. Calibrated ABMs, on the other hand, are more likely to receive citations. What is more, ABMs that were both calibrated and validated are most the most successful papers in the sample. All conclusions were drawn considering (i.e. controlling for) the effects of age of the paper, the number of papers the paper cited itself, and (citation conventions in) the field in which it was published.

While the patterns explored in this and Chattoe-Brown’s recent contribution are interesting, or even puzzling, they should not distract from the goal of moving towards realistic agent-based simulations of social systems. In my opinion, models that combine rigorous theory with strong empirical foundations are instrumental to the creation of meaningful and purposeful agent-based models. Perhaps the results presented here should just be taken as another sign that citation counts are a weak signal of academic merit at best.

Data, code and supplementary analyses

All data and code used for this analysis, as well as the results from the supplementary analyses described in the text, are available here: https://osf.io/x9r7j/

Notes

[1] Note that the hyphen between “agent” and “based” does not affect the retrieved corpus. Both contributions that mention “agent based” and “agent-based” were retrieved.

[2] A small caveat to the analysis of the interaction effect is that the marginal improvement of model 2 upon model 1 is rather small (AIC difference of 269). This is likely (partially) due to the small number of papers that mention both calibration and validation (N=77).

Acknowledgements

Marijn Keijzer acknowledges IAST funding from the French National Research Agency (ANR) under the Investments for the Future (Investissements d’Avenir) program, grant ANR-17-EURE-0010.

References

Boero, R., & Squazzoni, F. (2005). Does empirical embeddedness matter? Methodological issues on agent-based models for analytical social science. Journal of Artificial Societies and Social Simulation, 8(4), 1–31. https://www.jasss.org/8/4/6.html

Chattoe-Brown, E. (2022) If You Want To Be Cited, Don’t Validate Your Agent-Based Model: A Tentative Hypothesis Badly In Need of Refutation. Review of Artificial Societies and Social Simulation, 1st Feb 2022. https://rofasss.org/2022/02/01/citing-od-models

Flache, A., Mäs, M., Feliciani, T., Chattoe-Brown, E., Deffuant, G., Huet, S., & Lorenz, J. (2017). Models of social influence: towards the next frontiers. Journal of Artificial Societies and Social Simulation, 20(4). https://doi.org/10.18564/jasss.3521


Keijzer, M. (2022) If you want to be cited, calibrate your agent-based model: Reply to Chattoe-Brown. Review of Artificial Societies and Social Simulation, 9th Mar 2022. https://rofasss.org/2022/03/09/Keijzer-reply-to-Chattoe-Brown


© The authors under the Creative Commons’ Attribution-NoDerivs (CC BY-ND) Licence (v4.0)

If You Want To Be Cited, Don’t Validate Your Agent-Based Model: A Tentative Hypothesis Badly In Need of Refutation

By Edmund Chattoe-Brown

As part of a previous research project, I collected a sample of the Opinion Dynamics (hereafter OD) models published in JASSS that were most highly cited in JASSS. The idea here was to understand what styles of OD research were most influential in the journal. In the top 50 on 19.10.21 there were eight such articles. Five were self-contained modelling exercises (Hegselmann and Krause 2002, 58 citations, Deffuant et al. 2002, 35 citations, Salzarulo 2006, 13 citations, Deffuant 2006, 13 citations and Urbig et al. 2008, 9 citations), two were overviews of OD modelling (Flache et al. 2017, 13 citations and Sobkowicz 2009, 10 citations) and one included an OD example in an article mainly discussing the merits of cellular automata modelling (Hegselmann and Flache 1998, 12 citations). In order to get in to the top 50 on that date you had to achieve at least 7 citations. In parallel, I have been trying to identify Agent-Based Models that are validated (undergo direct comparison of real and equivalent simulated data). Based on an earlier bibliography (Chattoe-Brown 2020) which I extended to the end of 2021 for JASSS and articles which were described as validated in the highly cited articles listed above, I managed to construct a small and unsystematic sample of validated OD models. (Part of the problem with a systematic sample is that validated models are not readily searchable as a distinct category and there are too many OD models overall to make reading them all feasible. Also, I suspect, validated models just remain rare in line with the larger scale findings of Dutton and Starbuck (1971, p. 130, table 1) and discouragingly, much more recently, Angus and Hassani-Mahmooei (2015, section 4.5, figure 9). Obviously, since part of the sample was selected by total number of citations, one cannot make a comparison on that basis, so instead I have used the best possible alternative (given the limitations of the sample) and compared articles on citations per year. The problem here is that attempting validated modelling is relatively new while older articles inevitably accumulate citations however slowly. But what I was trying to discover was whether new validated models could be cited at a much higher annual rate without reaching the top 50 (or whether, conversely, older articles could have a high enough total citations to get into the top 50 without having a particularly impressive annual citation rate.) One would hope that, ultimately, validated models would tend to receive more citations than those that were not validated (but see the rather disconcerting related findings of Serra-Garcia and Gneezy 2021). Table 1 shows the results sorted by citations per year.

Article Status Number of JASSS Citations[1] Number of Years[2] Citations Per Year
Bernardes et al. 2002 Validated 1 20 0.05
Bernardes et al. 2001 Validated 2 21 0.096
Fortunato and Castellano 2007 Validated 2 15 0.13
Caruso and Castorina 2005 Validated 4 17 0.24
Chattoe-Brown 2014 Validated 2 8 0.25
Brousmiche et al. 2016 Validated 2 6 0.33
Hegselmann and Flache 1998 Non-Validated 12 24 0.5
Urbig et al. 2008 Non-Validated 9 14 0.64
Sobkowicz 2009 Non-Validated 10 13 0.77
Deffuant 2006 Non-Validated 13 16 0.81
Salzarulo 2006 Non-Validated 13 16 0.81
Duggins 2017 Validated 5 5 1
Deffuant et al. 2002 Non-Validated 35 20 1.75
Flache et al. 2017 Non-Validated 13 5 2.6
Hegselmann and Krause 2002 Non-Validated 58 20 2.9

Table 1. Annual Citation Rates for OD Articles Highly Cited in JASSS (Systematic Sample) and Validated OD Articles in or Cited in JASSS (Unsystematic Sample)

With the notable (and potentially encouraging) exception of Duggins (2017), the most recent validated OD model I have been able to discover in JASSS, the sample clearly divides into non-validated research with more citations and validated research with fewer. The position of Duggins (2017) might suggest greater recent interest in validated OD models. Unfortunately, however, qualitative analysis of the citations suggests that these are not cited as validated models per se (and thus as a potential improvement over non-validated models) but merely as part of general classes of OD model (like those involving social networks or repulsion – moving away from highly discrepant opinions). This tendency to cite validated models without acknowledging that they are validated (and what the implications of that might be) is widespread in the articles I looked at.

Obviously, there is plenty wrong with this analysis. Even looking at citations per annum we are arguably still partially sampling on the dependent variable (articles selected for being widely cited prove to be widely cited!) and the sample of validated OD models is unsystematic (though in fairness the challenges of producing a systematic sample are significant.[3]) But the aim here is to make a distinctive use of RoFASSS as a rapid mode of permanent publication and to think differently about science. If I tried to publish this in a peer reviewed journal, the amount of labour required to satisfy reviewers about the research design would probably be prohibitive (even if it were possible). As a result, the case to answer about this apparent (and perhaps undesirable) pattern in data might never see the light of day.

But by publishing quickly in RoFASSS without the filter of peer review I actively want my hypothesis to be rejected or replaced by research based on a better design (and such research may be motivated precisely by my presenting this interesting pattern with all its imperfections). When it comes to scientific progress, the chance to be clearly wrong now could be more useful than the opportunity to be vaguely right at some unknown point in the future.

Acknowledgements

This analysis was funded by the project “Towards Realistic Computational Models Of Social Influence Dynamics” (ES/S015159/1) funded by ESRC via ORA Round 5 (PI: Professor Bruce Edmonds, Centre for Policy Modelling, Manchester Metropolitan University: https://gtr.ukri.org/projects?ref=ES%2FS015159%2F1).

Notes

[1] Note that the validated OD models had their citations counted manually while the high total citation articles had them counted automatically. This may introduce some comparison error but there is no reason to think that either count will be terribly inaccurate.

[2] Including the year of publication and the current year (2021).

[3] Note, however, that there are some checks and balances on sample quality. Highly successful validated OD models would have shown up independently in the top 50. There is thus an upper bound to the impact of the articles I might have missed in manually constructing my “version 1” bibliography. The unsystematic review of 47 articles by Sobkowicz (2009) also checks independently on the absence of validated OD models in JASSS to that date and confirms the rarity of such articles generally. Only four of the articles that he surveys are significantly empirical.

References

Angus, Simon D. and Hassani-Mahmooei, Behrooz (2015) ‘“Anarchy” Reigns: A Quantitative Analysis of Agent-Based Modelling Publication Practices in JASSS, 2001-2012’, Journal of Artificial Societies and Social Simulation, 18(4), October, article 16, <http://jasss.soc.surrey.ac.uk/18/4/16.html>. doi:10.18564/jasss.2952

Bernardes, A. T., Costa, U. M. S., Araujo, A. D. and Stauffer, D. (2001) ‘Damage Spreading, Coarsening Dynamics and Distribution of Political Votes in Sznajd Model on Square Lattice’, International Journal of Modern Physics C: Computational Physics and Physical Computation, 12(2), February, pp. 159-168. doi:10.1140/e10051-002-0013-y

Bernardes, A. T., Stauffer, D. and Kertész, J. (2002) ‘Election Results and the Sznajd Model on Barabasi Network’, The European Physical Journal B: Condensed Matter and Complex Systems, 25(1), January, pp. 123-127. doi:10.1142/S0129183101001584

Brousmiche, Kei-Leo, Kant, Jean-Daniel, Sabouret, Nicolas and Prenot-Guinard, François (2016) ‘From Beliefs to Attitudes: Polias, A Model of Attitude Dynamics Based on Cognitive Modelling and Field Data’, Journal of Artificial Societies and Social Simulation, 19(4), October, article 2, <https://www.jasss.org/19/4/2.html>. doi:10.18564/jasss.3161

Caruso, Filippo and Castorina, Paolo (2005) ‘Opinion Dynamics and Decision of Vote in Bipolar Political Systems’, arXiv > Physics > Physics and Society, 26 March, version 2. doi:10.1142/S0129183105008059

Chattoe-Brown, Edmund (2014) ‘Using Agent Based Modelling to Integrate Data on Attitude Change’, Sociological Research Online, 19(1), February, article 16, <https://www.socresonline.org.uk/19/1/16.html>. doi:0.5153/sro.3315

Chattoe-Brown Edmund (2020) ‘A Bibliography of ABM Research Explicitly Comparing Real and Simulated Data for Validation: Version 1’, CPM Report CPM-20-216, 12 June, <http://cfpm.org/discussionpapers/256>

Deffuant, Guillaume (2006) ‘Comparing Extremism Propagation Patterns in Continuous Opinion Models’, Journal of Artificial Societies and Social Simulation, 9(3), June, article 8, <https://www.jasss.org/9/3/8.html>.

Deffuant, Guillaume, Amblard, Frédéric, Weisbuch, Gérard and Faure, Thierry (2002) ‘How Can Extremism Prevail? A Study Based on the Relative Agreement Interaction Model’, Journal of Artificial Societies and Social Simulation, 5(4), October, article 1, <https://www.jasss.org/5/4/1.html>.

Duggins, Peter (2017) ‘A Psychologically-Motivated Model of Opinion Change with Applications to American Politics’, Journal of Artificial Societies and Social Simulation, 20(1), January, article 13, <http://jasss.soc.surrey.ac.uk/20/1/13.html>. doi:10.18564/jasss.3316

Dutton, John M. and Starbuck, William H. (1971) ‘Computer Simulation Models of Human Behavior: A History of an Intellectual Technology’, IEEE Transactions on Systems, Man, and Cybernetics, SMC-1(2), April, pp. 128-171. doi:10.1109/TSMC.1971.4308269

Flache, Andreas, Mäs, Michael, Feliciani, Thomas, Chattoe-Brown, Edmund, Deffuant, Guillaume, Huet, Sylvie and Lorenz, Jan (2017) ‘Models of Social Influence: Towards the Next Frontiers’, Journal of Artificial Societies and Social Simulation, 20(4), October, article 2, <http://jasss.soc.surrey.ac.uk/20/4/2.html>. doi:10.18564/jasss.3521

Fortunato, Santo and Castellano, Claudio (2007) ‘Scaling and Universality in Proportional Elections’, Physical Review Letters, 99(13), 28 September, article 138701. doi:10.1103/PhysRevLett.99.138701

Hegselmann, Rainer and Flache, Andreas (1998) ‘Understanding Complex Social Dynamics: A Plea For Cellular Automata Based Modelling’, Journal of Artificial Societies and Social Simulation, 1(3), June, article 1, <https://www.jasss.org/1/3/1.html>.

Hegselmann, Rainer and Krause, Ulrich (2002) ‘Opinion Dynamics and Bounded Confidence Models, Analysis, and Simulation’, Journal of Artificial Societies and Social Simulation, 5(3), June, article 2, <http://jasss.soc.surrey.ac.uk/5/3/2.html>.

Salzarulo, Laurent (2006) ‘A Continuous Opinion Dynamics Model Based on the Principle of Meta-Contrast’, Journal of Artificial Societies and Social Simulation, 9(1), January, article 13, <http://jasss.soc.surrey.ac.uk/9/1/13.html>.

Serra-Garcia, Marta and Gneezy, Uri (2021) ‘Nonreplicable Publications are Cited More Than Replicable Ones’, Science Advances, 7, 21 May, article eabd1705. doi:10.1126/sciadv.abd1705

Sobkowicz, Pawel (2009) ‘Modelling Opinion Formation with Physics Tools: Call for Closer Link with Reality’, Journal of Artificial Societies and Social Simulation, 12(1), January, article 11, <http://jasss.soc.surrey.ac.uk/12/1/11.html>.

Urbig, Diemo, Lorenz, Jan and Herzberg, Heiko (2008) ‘Opinion Dynamics: The Effect of the Number of Peers Met at Once’, Journal of Artificial Societies and Social Simulation, 11(2), March, article 4, <http://jasss.soc.surrey.ac.uk/11/2/4.html>.


© The authors under the Creative Commons’ Attribution-NoDerivs (CC BY-ND) Licence (v4.0)

Response to the review of Edmund Chattoe-Brown of the book “Social Simulations for a Crisis”

By Frank Dignum

This is a reply to a review in JASSS (Chattoe-Brown 2021) of (Dignum 2021).

Before responding to some of the specific concerns of Edmund I would like to thank him for the thorough review. I am especially happy with his conclusion that the book is solid enough to make it a valuable contribution to scientific progress in modelling crises. That was the main aim of the book and it seems that is achieved. I want to reiterate what we already remarked in the book; we do not claim that we have the best or only way of developing an Agent-Based Model (ABM) for crises. Nor do we claim that our simulations were without limitations. But we do think it is an extensive foundation from which others can start, either picking up some bits and pieces, deviating from it in specific ways or extending it in specific ways.

The concerns that are expressed by Edmund are certainly valid. I agree with some of them, but will nuance some others. First of all the concern about the fact that we seem to abandon the NetLogo implementation and move to Repast. This fact does not make the ABM itself any less valid! In itself it is also an important finding. It is not possible to scale such a complex model in NetLogo beyond around two thousand agents. This is not just a limitation of our particular implementation, but a more general limitation of the platform. It leads to the important challenge to get more computer scientists involved to develop platforms for social simulations that both support the modelers adequately and provide efficient and scalable implementations.

That the sheer size of the model and the results make it difficult to trace back the importance and validity of every factor on the results is completely true. We have tried our best to highlight the most important aspects every time. But, this leaves questions as to whether we make the right selection of highlighted aspects. As an illustration to this, we have been busy for two months to justify our results of the simulations of the effectiveness of the track and tracing apps. We basically concluded that we need much better integrated analysis tools in the simulation platform. NetLogo is geared towards creating one simulation scenario, running the simulation and analyzing the results based on a few parameters. This is no longer sufficient when we have a model with which we can create many scenarios and have many parameters that influence a result. We used R now to interpret the flood of data that was produced with every scenario. But, R is not really the most user friendly tool and also not specifically meant for analyzing the data from social simulations.

Let me jump to the third concern of Edmund and link it to the analysis of the results as well. While we tried to justify the results of our simulation on the effectiveness of the track and tracing app we compared our simulation with an epidemiological based model. This is described in chapter 12 of the book. Here we encountered the difference in assumed number of contacts per day a person has with other persons. One can take the results, as quoted by Edmund as well, of 8 or 13 from empirical work and use them in the model. However, the dispute is not about the number of contacts a person has per day, but what counts as a contact! For the COVID-19 simulations standing next to a person in the queue in a supermarket for five minutes can count as a contact, while such a contact is not a meaningful contact in the cited literature. Thus, we see that what we take as empirically validated numbers might not at all be the right ones for our purpose. We have tried to justify all the values of parameters and outcomes in the context for which the simulations were created. We have also done quite some sensitivity analyses, which we did not all report on just to keep the volume of the book to a reasonable size. Although we think we did a proper job in justifying all results, that does not mean that one can have different opinions on the value that some parameters should have. It would be very good to check the influence on the results of changes in these parameters. This would also progress scientific insights in the usefulness of complex models like the one we made!

I really think that an ABM crisis response should be institutional. That does not mean that one institution determines the best ABM, but rather that the ABM that is put forward by that institution is the result of a continuous debate among scientists working on ABM’s for that type of crisis. For us, one of the more important outcomes of the ASSOCC project is that we really need much better tools to support the types of simulations that are needed for a crisis situation. However, it is very difficult to develop these tools as a single group. A lot of the effort needed is not publishable and thus not valued in an academic environment. I really think that the efforts that have been put in platforms such as NetLogo and Repast are laudable. They have been made possible by some generous grants and institutional support. We argue that this continuous support is also needed in order to be well equipped for a next crisis. But we do not argue that an institution would by definition have the last word in which is the best ABM. In an ideal case it would accumulate all academic efforts as is done in the climate models, but even more restricted models would still be better than just having a thousand individuals all claiming to have a useable ABM while governments have to react quickly to a crisis.

The final concern of Edmund is about the empirical scale of our simulations. This is completely true! Given the scale and details of what we can incorporate we can only simulate some phenomena and certainly not everything around the COVID-19 crisis. We tried to be clear about this limitation. We had discussions about the Unity interface concerning this as well. It is in principle not very difficult to show people walking in the street, taking a car or a bus, etc. However, we decided to show a more abstract representation just to make clear that our model is not a complete model of a small town functioning in all aspects. We have very carefully chosen which scenarios we can realistically simulate and give some insights in reality from. Maybe we should also have discussed more explicitly all the scenarios that we did not run with the reasons why they would be difficult or unrealistic in our ABM. One never likes to discuss all the limitations of one’s labor, but it definitely can be very insightful. I have made up for this a little bit by submitting an to a special issue on predictions with ABM in which I explain in more detail, which should be the considerations to use a particular ABM to try to predict some state of affairs. Anyone interested to learn more about this can contact me.

To conclude this response to the review, I again express my gratitude for the good and thorough work done. The concerns that were raised are all very valuable to concern. What I tried to do in this response is to highlight that these concerns should be taken as a call to arms to put effort in social simulation platforms that give better support for creating simulations for a crisis.

References

Dignum, F. (Ed.) (2021) Social Simulation for a Crisis: Results and Lessons from Simulating the COVID-19 Crisis. Springer. DOI:10.1007/978-3-030-76397-8

Chattoe-Brown, E. (2021) A review of “Social Simulation for a Crisis: Results and Lessons from Simulating the COVID-19 Crisis”. Journal of Artificial Society and Social Simulation. 24(4). https://www.jasss.org/24/4/reviews/1.html


Dignum, F. (2020) Response to the review of Edmund Chattoe-Brown of the book “Social Simulations for a Crisis”. Review of Artificial Societies and Social Simulation, 4th Nov 2021. https://rofasss.org/2021/11/04/dignum-review-response/


© The authors under the Creative Commons’ Attribution-NoDerivs (CC BY-ND) Licence (v4.0)

Where Now For Experiments In Agent-Based Modelling? Report of a Round Table at SSC2021, held on 22 September 2021


By Dino Carpentras1, Edmund Chattoe-Brown2*, Bruce Edmonds3, Cesar García-Diaz4, Christian Kammler5, Anna Pagani6 and Nanda Wijermans7

*Corresponding author, 1Centre for Social Issues Research, University of Limerick, 2School of Media, Communication and Sociology, University of Leicester, 3Centre for Policy Modelling, Manchester Metropolitan University, 4Department of Business Administration, Pontificia Universidad Javeriana, 5Department of Computing Science, Umeå University, 6Laboratory on Human-Environment Relations in Urban Systems (HERUS), École Polytechnique Fédérale de Lausanne (EPFL), 7Stockholm Resilience Centre, Stockholm University.

Introduction

This round table was convened to advance and improve the use of experimental methods in Agent-Based Modelling, in the hope that both existing and potential users of the method would be able to identify steps towards this aim[i]. The session began with a presentation by Bruce Edmonds (http://cfpm.org/slides/experiments%20and%20ABM.pptx) whose main argument was that the traditional idea of experimentation (controlling extensively for the environment and manipulating variables) was too simplistic to add much to the understanding of the sort of complex systems modelled by ABMs and that we should therefore aim to enhance experiments (for example using richer experimental settings, richer measures of those settings and richer data – like discussions between participants as well as their behaviour). What follows is a summary of the main ideas discussed organised into themed sections.

What Experiments Are

Defining the field of experiments proved to be challenging on two counts. The first was that there are a number of labels for potentially relevant approaches (experiments themselves – for example, Boero et al. 2010, gaming – for example, Tykhonov et al. 2008, serious games – for example Taillandier et al. 2019, companion/participatory modelling – for example, Ramanath and Gilbert 2004 and web based gaming – for example, Basole et al. 2013) whose actual content overlap is unclear. Is it the case that a gaming approach is generally more in line with the argument proposed by Edmonds? How can we systematically distinguish the experimental content of a serious game approach from a gaming approach? This seems to be a problem in immature fields where the labels are invented first (often on the basis of a few rather divergent instances) and the methodology has to grow into them. It would be ludicrous if we couldn’t be sure whether a piece of research was survey based or interview based (and this would radically devalue the associated labels if it were so.)

The second challenge is also more general in Agent-Based Modelling which is the same labels being used differently by different researchers. It is not productive to argue about which uses are correct but it is important that the concepts behind the different uses are clear so a common scheme of labelling might ultimately be agreed. So, for example, experiment can be used (and different round table participants had different perspectives on the uses they expected) to mean laboratory experiments (simplified settings with human subjects – again see, for example, Boero et al. 2010), experiments with ABMs (formal experimentation with a model that doesn’t necessarily have any empirical content – for example, Doran 1998) and natural experiments (choice of cases in the real world to, for example, test a theory – see Dinesen 2013).

One approach that may help with this diversity is to start developing possible dimensions of experimentation. One might be degree of control (all the way from very stripped down behavioural laboratory experiments to natural situations where the only control is to select the cases). Another might be data diversity: From pure analysis of ABMs (which need not involve data at all), through laboratory experiments that record only behaviour to ethnographic collection and analysis of diverse data in rich experiments (like companion modelling exercises.) But it is important for progress that the field develops robust concepts that allow meaningful distinctions and does not get distracted into pointless arguments about labelling. Furthermore, we must consider the possible scientific implications of experimentation carried out at different points in the dimension space: For example, what are the relative strengths and limitations of experiments that are more or less controlled or more or less data diverse? Is there a “sweet spot” where the benefit of experiments is greatest to Agent-Based Modelling? If so, what is it and why?

The Philosophy of Experiment

The second challenge is the different beliefs (often associated with different disciplines) about the philosophical underpinnings of experiment such as what we might mean by a cause. In an economic experiment, for example, the objective may be to confirm a universal theory of decision making through displayed behaviour only. (It is decisions described by this theory which are presumed to cause the pattern of observed behaviour.) This will probably not allow the researcher to discover that their basic theory is wrong (people are adaptive not rational after all) or not universal (agents have diverse strategies), or that some respondents simply didn’t understand the experiment (deviations caused by these phenomena may be labelled noise relative to the theory being tested but in fact they are not.)

By contrast qualitative sociologists believe that subjective accounts (including accounts of participation in the experiment itself) can be made reliable and that they may offer direct accounts of certain kinds of cause: If I say I did something for a certain reason then it is at least possible that I actually did (and that the reason I did it is therefore its cause). It is no more likely that agreement will be reached on these matters in the context of experiments than it has been elsewhere. But Agent-Based Modelling should keep its reputation for open mindedness by seeing what happens when qualitative data is also collected and not just rejecting that approach out of hand as something that is “not done”. There is no need for Agent-Based Modelling blindly to follow the methodology of any one existing discipline in which experiments are conducted (and these disciplines often disagree vigorously on issues like payment and deception with no evidence on either side which should also make us cautious about their self-evident correctness.)

Finally, there is a further complication in understanding experiments using analogies with the physical sciences. In understanding the evolution of a river system, for example, one can control/intervene, one can base theories on testable micro mechanisms (like percolation) and one can observe. But there is no equivalent to asking the river what it intends (whether we can do this effectively in social science or not).[ii] It is not totally clear how different kinds of data collection like these might relate to each other in the social sciences, for example, data from subjective accounts, behavioural experiments (which may show different things from what respondents claim) and, for example, brain scans (which side step the social altogether.) This relationship between different kinds of data currently seems incompletely explored and conceptualised. (There is a tendency just to look at easy cases like surveys versus interviews.)

The Challenge of Experiments as Practical Research

This is an important area where the actual and potential users of experiments participating in the round table diverged. Potential users wanted clear guidance on the resources, skills and practices involved in doing experimental work (and see similar issues in the behavioural strategy literature, for example, Reypens and Levine 2018). At the most basic level, when does a researcher need to do an experiment (rather than a survey, interviews or observation), what are the resource requirements in terms of time, facilities and money (laboratory experiments are unusual in often needing specific funding to pay respondents rather than substituting the researcher working for free) what design decisions need to be made (paying subjects, online or offline, can subjects be deceived?), how should the data be analysed (how should an ABM be validated against experimental data?) and so on.[iii] (There are also pros and cons to specific bits of potentially supporting technology like Amazon Mechanical Turk, Qualtrics and Prolific, which have not yet been documented and systematically compared for the novice with a background in Agent-Based Modelling.) There is much discussion about these matters in the traditional literatures of social sciences that do experiments (see, for example, Kagel and Roth 1995, Levine and Parkinson 1994 and Zelditch 2014) but this has not been summarised and tuned specifically for the needs of Agent-Based Modellers (or published where they are likely to see it).

However, it should not be forgotten that not all research efforts need this integration within the same project, so thinking about the problems that really need it is critical. Nonetheless, triangulation is indeed necessary within research programmes. For instance, in subfields such as strategic management and organisational design, it is uncommon to see an ABM integrated with an experiment as part of the same project (though there are exceptions, such as Vuculescu 2017). Instead, ABMs are typically used to explore “what if” scenarios, build process theories and illuminate potential empirical studies. In this approach, knowledge is accumulated instead through the triangulation of different methodologies in different projects (see Burton and Obel 2018). Additionally, modelling and experimental efforts are usually led by different specialists – for example, there is a Theoretical Organisational Models Society whose focus is the development of standards for theoretical organisation science.

In a relatively new and small area, all we often have is some examples of good practice (or more contentiously bad practice) of which not everyone is even aware. A preliminary step is thus to see to what extent people know of good practice and are able to agree that it is good (and perhaps why it is good).

Finally, there was a slightly separate discussion about the perspectives of experimental participants themselves. It may be that a general problem with unreal activity is that you know it is unreal (which may lead to problems with ecological validity – Bornstein 1999.) On the other hand, building on the enrichment argument put forward by Edmonds (above), there is at least anecdotal observational evidence that richer and more realistic settings may cause people to get “caught up” and perhaps participate more as they would in reality. Nonetheless, there are practical steps we can take to learn more about these phenomena by augmenting experimental designs. For example we might conduct interviews (or even group discussions) before and after experiments. This could make the initial biases of participants explicit and allow them to self-evaluate retrospectively the extent to which they got engaged (or perhaps even over-engaged) during the game. The first such questionnaire could be available before attending the experiment, whilst another could be administered right after the game (and perhaps even a third a week later). In addition to practical design solutions, there are also relevant existing literatures that experimental researchers should probably draw on in this area, for example that on systemic design and the associated concept of worldviews. But it is fair to say that we do not yet fully understand the issues here but that they clearly matter to the value of experimental data for Agent-Based Modelling.[iv]

Design of Experiments

Something that came across strongly in the round table discussion as argued by existing users of experimental methods was the desirability of either designing experiments directly based on a specific ABM structure (rather than trying to use a stripped down – purely behavioural – experiment) or mixing real and simulated participants in richer experimental settings. In line with the enrichment argument put forward by Edmonds, nobody seemed to be using stripped down experiments to specify, calibrate or validate ABM elements piecemeal. In the examples provided by round table participants, experiments corresponding closely to the ABM (and mixing real and simulated participants) seemed particularly valuable in tackling subjects that existing theory had not yet really nailed down or where it was clear that very little of the data needed for a particular ABM was available. But there was no sense that there is a clearly defined set of research designs with associated purposes on which the potential user can draw. (The possible role of experiments in supporting policy was also mentioned but no conclusions were drawn.)

Extracting Rich Data from Experiments

Traditional experiments are time consuming to do, so they are frequently optimised to obtain the maximum power and discrimination between factors of interest. In such situations they will often limit their data collection to what is strictly necessary for testing their hypotheses. Furthermore, it seems to be a hangover from behaviourist psychology that one does not use self-reporting on the grounds that it might be biased or simply involve false reconstruction (rationalisation). From the point of view of building or assessing ABMs this approach involves a wasted opportunity. Due to the flexible nature of ABMs there is a need for as many empirical constraints upon modelling as possible. These constraints can come from theory, evidence or abstract principles (such as simplicity) but should not hinder the design of an ABM but rather act as a check on its outcomes. Game-like situations can provide rich data about what is happening, simultaneously capturing decisions on action, the position and state of players, global game outcomes/scores and what players say to each other (see, for example, Janssen et al. 2010, Lindahl et al. 2021). Often, in social science one might have a survey with one set of participants, interviews with others and longitudinal data from yet others – even if these, in fact, involve the same people, the data will usually not indicate this through consistent IDs. When collecting data from a game (and especially from online games) there is a possibility for collecting linked data with consistent IDs – including interviews – that allows for a whole new level of ABM development and checking.

Standards and Institutional Bootstrapping

This is also a wider problem in newer methods like Agent-Based Modelling. How can we foster agreement about what we are doing (which has to build on clear concepts) and institutionalise those agreements into standards for a field (particularly when there is academic competition and pressure to publish).[v] If certain journals will not publish experiments (or experiments done in certain ways) what can we do about that? JASSS was started because it was so hard to publish ABMs. It has certainly made that easier but is there a cost through less publication in other journals? See, for example, Squazzoni and Casnici (2013). Would it have been better for the rigour and wider acceptance of Agent-Based Modelling if we had met the standards of other fields rather than setting our own? This strategy, harder in the short term, may also have promoted communication and collaboration better in the long term. If reviewing is arbitrary (reviewers do not seem to have a common view of what makes an experiment legitimate) then can that situation be improved (and in particular how do we best go about that with limited resources?) To some extent, normal individualised academic work may achieve progress here (researchers make proposals, dispute and refine them and their resulting quality ensures at least some individualised adoption by other researchers) but there is often an observable gap in performance: Even though most modellers will endorse the value of data for modelling in principle most models are still non-empirical in practice (Angus and Hassani-Mahmooei 2015, Figure 9). The jury is still out on the best way to improve reviewer consistency, use the power of peer review to impose better standards (and thus resolve a collective action problem under academic competition[vi]) and so on but recognising and trying to address these issues is clearly important to the health of experimental methods in Agent-Based Modelling. Since running experiments in association with ABMs is already challenging, adding the problem of arbitrary reviewer standards makes the publication process even harder. This discourages scientists from following this path and therefore retards this kind of research generally. Again, here, useful resources (like the Psychological Science Accelerator, which facilitates greater experimental rigour by various means) were suggested in discussion as raw material for our own improvements to experiments in Agent-Based Modelling.

Another issue with newer methods such as Agent-Based Modelling is the path to legitimation before the wider scientific community. The need to integrate ABMs with experiments does not necessarily imply that the legitimation of the former is achieved by the latter. Experimental economists, for instance, may still argue that (in the investigation of behaviour and its implications for policy issues), experiments and data analysis alone suffice. They may rightly ask: What is the additional usefulness of an ABM? If an ABM always needs to be justified by an experiment and then validated by a statistical model of its output, then the method might not be essential at all. Orthodox economists skip the Agent-Based Modelling part: They build behavioural experiments, gather (rich) data, run econometric models and make predictions, without the need (at least as they see it) to build any computational representation. Of course, the usefulness of models lies in the premise that they may tell us something that experiments alone cannot (see Knudsen et al. 2019). But progress needs to be made in understanding (and perhaps reconciling) these divergent positions. The social simulation community therefore needs to be clearer about exactly what ABMs can contribute beyond the limitations of an experiment, especially when addressing audiences of non-modellers (Ballard et al. 2021). Not only is a model valuable when rigorously validated against data, but also whenever it makes sense of the data in ways that traditional methods cannot.

Where Now?

Researchers usually have more enthusiasm than they have time. In order to make things happen in an academic context it is not enough to have good ideas, people need to sign up and run with them. There are many things that stand a reasonable chance of improving the profile and practice of experiments in Agent-Based Modelling (regular sessions at SSC, systematic reviews, practical guidelines and evaluated case studies, discussion groups, books or journal special issues, training and funding applications that build networks and teams) but to a great extent, what happens will be decided by those who make it happen. The organisers of this round table (Nanda Wijermans and Edmund Chattoe-Brown) are very keen to support and coordinate further activity and this summary of discussions is the first step to promote that. We hope to hear from you.

References

Angus, Simon D. and Hassani-Mahmooei, Behrooz (2015) ‘“Anarchy” Reigns: A Quantitative Analysis of Agent-Based Modelling Publication Practices in JASSS, 2001-2012’, Journal of Artificial Societies and Social Simulation, 18(4), October, article 16, <http://jasss.soc.surrey.ac.uk/18/4/16.html>. doi:10.18564/jasss.2952

Ballard, Timothy, Palada, Hector, Griffin, Mark and Neal, Andrew (2021) ‘An Integrated Approach to Testing Dynamic, Multilevel Theory: Using Computational Models to Connect Theory, Model, and Data’, Organizational Research Methods, 24(2), April, pp. 251-284. doi: 10.1177/1094428119881209

Basole, Rahul C., Bodner, Douglas A. and Rouse, William B. (2013) ‘Healthcare Management Through Organizational Simulation’, Decision Support Systems, 55(2), May, pp. 552-563. doi:10.1016/j.dss.2012.10.012

Boero, Riccardo, Bravo, Giangiacomo, Castellani, Marco and Squazzoni, Flaminio (2010) ‘Why Bother with What Others Tell You? An Experimental Data-Driven Agent-Based Model’, Journal of Artificial Societies and Social Simulation, 13(3), June, article 6, <https://www.jasss.org/13/3/6.html>. doi:10.18564/jasss.1620

Bornstein, Brian H. (1999) ‘The Ecological Validity of Jury Simulations: Is the Jury Still Out?’ Law and Human Behavior, 23(1), February, pp. 75-91. doi:10.1023/A:1022326807441

Burton, Richard M. and Obel, Børge (2018) ‘The Science of Organizational Design: Fit Between Structure and Coordination’, Journal of Organization Design, 7(1), December, article 5. doi:10.1186/s41469-018-0029-2

Derbyshire, James (2020) ‘Answers to Questions on Uncertainty in Geography: Old Lessons and New Scenario Tools’, Environment and Planning A: Economy and Space, 52(4), June, pp. 710-727. doi:10.1177/0308518X19877885

Dinesen, Peter Thisted (2013) ‘Where You Come From or Where You Live? Examining the Cultural and Institutional Explanation of Generalized Trust Using Migration as a Natural Experiment’, European Sociological Review, 29(1), February, pp. 114-128. doi:10.1093/esr/jcr044

Doran, Jim (1998) ‘Simulating Collective Misbelief’, Journal of Artificial Societies and Social Simulation, 1(1), January, article 1, <https://www.jasss.org/1/1/3.html>.

Janssen, Marco A., Holahan, Robert, Lee, Allen and Ostrom, Elinor (2010) ‘Lab Experiments for the Study of Social-Ecological Systems’, Science, 328(5978), 30 April, pp. 613-617. doi:10.1126/science.1183532

Kagel, John H. and Roth, Alvin E. (eds.) (1995) The Handbook of Experimental Economics (Princeton, NJ: Princeton University Press).

Knudsen, Thorbjørn, Levinthal, Daniel A. and Puranam, Phanish (2019) ‘Editorial: A Model is a Model’, Strategy Science, 4(1), March, pp. 1-3. doi:10.1287/stsc.2019.0077

Levine, Gustav and Parkinson, Stanley (1994) Experimental Methods in Psychology (Hillsdale, NJ: Lawrence Erlbaum Associates).

Lindahl, Therese, Janssen, Marco A. and Schill, Caroline (2021) ‘Controlled Behavioural Experiments’, in Biggs, Reinette, de Vos, Alta, Preiser, Rika, Clements, Hayley, Maciejewski, Kristine and Schlüter, Maja (eds.) The Routledge Handbook of Research Methods for Social-Ecological Systems (London: Routledge), pp. 295-306. doi:10.4324/9781003021339-25

Ramanath, Ana Maria and Gilbert, Nigel (2004) ‘The Design of Participatory Agent-Based Social Simulations’, Journal of Artificial Societies and Social Simulation, 7(4), October, article 1, <https://www.jasss.org/7/4/1.html>.

Reypens, Charlotte and Levine, Sheen S. (2018) ‘Behavior in Behavioral Strategy: Capturing, Measuring, Analyzing’, in Behavioral Strategy in Perspective, Advances in Strategic Management Volume 39 (Bingley: Emerald Publishing), pp. 221-246. doi:10.1108/S0742-332220180000039016

Squazzoni, Flaminio and Casnici, Niccolò (2013) ‘Is Social Simulation a Social Science Outstation? A Bibliometric Analysis of the Impact of JASSS’, Journal of Artificial Societies and Social Simulation, 16(1), January, article 10, <http://jasss.soc.surrey.ac.uk/16/1/10.html>. doi:10.18564/jasss.2192

Taillandier, Patrick, Grignard, Arnaud, Marilleau, Nicolas, Philippon, Damien, Huynh, Quang-Nghi, Gaudou, Benoit and Drogoul, Alexis (2019) ‘Participatory Modeling and Simulation with the GAMA Platform’, Journal of Artificial Societies and Social Simulation, 22(2), March, article 3, <https://www.jasss.org/22/2/3.html>. doi:10.18564/jasss.3964

Tykhonov, Dmytro, Jonker, Catholijn, Meijer, Sebastiaan and Verwaart, Tim (2008) ‘Agent-Based Simulation of the Trust and Tracing Game for Supply Chains and Networks’, Journal of Artificial Societies and Social Simulation, 11(3), June, article 1, <https://www.jasss.org/11/3/1.html>.

Vuculescu, Oana (2017) ‘Searching Far Away from the Lamp-Post: An Agent-Based Model’, Strategic Organization, 15(2), May, pp. 242-263. doi:10.1177/1476127016669869

Zelditch, Morris Junior (2007) ‘Laboratory Experiments in Sociology’, in Webster, Murray Junior and Sell, Jane (eds.) Laboratory Experiments in the Social Sciences (New York, NY: Elsevier), pp. 183-197.


Notes

[i] This event was organised (and the resulting article was written) as part of “Towards Realistic Computational Models of Social Influence Dynamics” a project funded through ESRC (ES/S015159/1) by ORA Round 5 and involving Bruce Edmonds (PI) and Edmund Chattoe-Brown (CoI). More about SSC2021 (Social Simulation Conference 2021) can be found at https://ssc2021.uek.krakow.pl

[ii] This issue is actually very challenging for social science more generally. When considering interventions in social systems, knowing and acting might be so deeply intertwined (Derbyshire 2020) that interventions may modify the same behaviours that an experiment is aiming to understand.

[iii] In addition, experiments often require institutional ethics approval (but so do interviews, gaming activities and others sort of empirical research of course), something with which non-empirical Agent-Based Modellers may have little experience.

[iv] Chattoe-Brown had interesting personal experience of this. He took part in a simple team gaming exercise about running a computer firm. The team quickly worked out that the game assumed an infinite return to advertising (so you could have a computer magazine consisting entirely of adverts) independent of the actual quality of the product. They thus simultaneously performed very well in the game from the perspective of an external observer but remained deeply sceptical that this was a good lesson to impart about running an actual firm. But since the coordinators never asked the team members for their subjective view, they may have assumed that the simulation was also a success in its didactic mission.

[v] We should also not assume it is best to set our own standards from scratch. It may be valuable to attempt integration with existing approaches, like qualitative validity (https://conjointly.com/kb/qualitative-validity/) particularly when these are already attempting to be multidisciplinary and/or to bridge the gap between, for example, qualitative and quantitative data.

[vi] Although journals also face such a collective action problem at a different level. If they are too exacting relative to their status and existing practice, researchers will simply publish elsewhere.


Dino Carpentras, Edmund Chattoe-Brown, Bruce Edmonds, Cesar García-Diaz, Christian Kammler, Anna Pagani and Nanda Wijermans (2020) Where Now For Experiments In Agent-Based Modelling? Report of a Round Table as Part of SSC2021. Review of Artificial Societies and Social Simulation, 2nd Novermber 2021. https://rofasss.org/2021/11/02/round-table-ssc2021-experiments/