Tag Archives: comment

Some Philosophical Viewpoints on Social Simulation

By Bruce Edmonds

How one thinks about knowledge can have a significant impact on how one develops models as well as how one might judge a good model.

  • Pragmatism. Under this view a simulation is a tool for a particular purpose. Different purposes will imply different tests for a good model. What is useful for one purpose might well not be good for another – different kinds of models and modelling processes might be good for each purpose. A simulation whose purpose is to explore the theoretical implications of some assumptions might well be very different from one aiming to explain some observed data. An example of this approach is (Edmonds & al. 2019).
  • Social Constructivism. Here knowledge about social phenomena (including simulation models) are collectively constructed. There is no other kind of knowledge than this. Each simulation is a way of thinking about social reality and plays a part in constructing it so. What is a suitable construction may vary over time and between cultures etc. What a group of people construct is not necessarily limited to simulations that are related to empirical data. (Ahrweiler & Gilbert 2005) seem to take this view but this is more explicit in some of the participatory modelling work, where the aim is to construct a simulation that is acceptable to a group of people, e.g. (Etienne 2014).
  • Relativism. There are no bad models, only different ways of mediating between your thought and reality (Morgan 1999). If you work hard on developing your model, you do not get a better model, only a different one. This might be a consequence of holding to an Epistemological Constructivist position.
  • Descriptive Realism. A simulation is a picture of some aspect of reality (albeit at a much lower ‘resolution’ and imperfectly). If one obtains a faithful representation of some aspect of reality as a model, one can use it for many different purposes. Could imply very complicated models (depending on what one observes and decides is relevant), which might themselves be difficult to understand. I suspect that many people have this in mind as they develop models, but few explicitly take this approach. Maybe an example is (Fieldhouse et al. 2016).
  • Classic Positivism. Here, the empirical fit and the analytic understanding of the simulation is all that matters, nothing else. Models should be tested against data and discarded if inadequate (or they compete and one is currently ahead empirically). Also they should be simple enough that they can be thoroughly understood. There is no obligation to be descriptively realistic. Many physics approaches to social phenomena follow this path (e.g Helbing 2010, Galam 2012).

Of course, few authors make their philosophical position explicit – usually one has to infer it from their text and modelling style.

References

Ahrweiler, P. and Gilbert, N. (2005). Caffè Nero: the Evaluation of Social Simulation. Journal of Artificial Societies and Social Simulation 8(4):14. http://jasss.soc.surrey.ac.uk/8/4/14.html

Edmonds, B., le Page, C., Bithell, M., Chattoe-Brown, E., Grimm, V., Meyer, R., Montañola-Sales, C., Ormerod, P., Root H. and Squazzoni. F. (in press) Different Modelling Purposes. Journal of Artificial Societies and Social Simulation, 22(3):6. http://jasss.soc.surrey.ac.uk/22/3/6.html.

Etienne, M. (ed.) (2014) Companion Modelling: A Participatory Approach to Support Sustainable Development. Springer

Fieldhouse, E., Lessard-Phillips, L. and Edmonds, B. (2016) Cascade or echo chamber? A complex agent-based simulation of voter turnout. Party Politics. 22(2):241-256. DOI:10.1177/1354068815605671

Galam, S. (2012) Sociophysics: A Physicist’s modeling of psycho-political phenomena. Springer.

Helbing, D. (2010). Quantitative sociodynamics: stochastic methods and models of social interaction processes. Springer.

Morgan, M. S., Morrison, M., & Skinner, Q. (Eds.). (1999). Models as mediators: Perspectives on natural and social science (Vol. 52). Cambridge University Press.


Edmonds, B. (2019) Some Philosophical Viewpoints on Social Simulation. Review of Artificial Societies and Social Simulation, 2nd July 2019. https://roasss.wordpress.com/2019/07/02/phil-view/

Cherchez Le RAT: A Proposed Plan for Augmenting Rigour and Transparency of Data Use in ABM

By Sebastian Achter, Melania Borit, Edmund Chattoe-Brown, Christiane Palaretti and Peer-Olaf Siebers

The initiative presented below arose from a Lorentz Center workshop on Integrating Qualitative and Quantitative Evidence using Social Simulation (8-12 April 2019, Leiden, the Netherlands). At the beginning of this workshop, the attenders divided themselves into teams aiming to work on specific challenges within the broad domain of the workshop topic. Our team took up the challenge of looking at “Rigour, Transparency, and Reuse”. The aim that emerged from our initial discussions was to create a framework for augmenting rigour and transparency (RAT) of data use in ABM when both designing, analysing and publishing such models.

One element of the framework that the group worked on was a roadmap of the modelling process in ABM, with particular reference to the use of different kinds of data. This roadmap was used to generate the second element of the framework: A protocol consisting of a set of questions, which, if answered by the modeller, would ensure that the published model was as rigorous and transparent in terms of data use, as it needs to be in order for the reader to understand and reproduce it.

The group (which had diverse modelling approaches and spanned a number of disciplines) recognised the challenges of this approach and much of the week was spent examining cases and defining terms so that the approach did not assume one particular kind of theory, one particular aim of modelling, and so on. To this end, we intend that the framework should be thoroughly tested against real research to ensure its general applicability and ease of use.

The team was also very keen not to “reinvent the wheel”, but to try develop the RAT approach (in connection with data use) to augment and “join up” existing protocols or documentation standards for specific parts of the modelling process. For example, the ODD protocol (Grimm et al. 2010) and its variants are generally accepted as the established way of documenting ABM but do not request rigorous documentation/justification of the data used for the modelling process.

The plan to move forward with the development of the framework is organised around three journal articles and associated dissemination activities:

  • A literature review of best (data use) documentation and practice in other disciplines and research methods (e.g. PRISMA – Preferred Reporting Items for Systematic Reviews and Meta-Analyses)
  • A literature review of available documentation tools in ABM (e.g. ODD and its variants, DOE, the “Info” pane of NetLogo, EABSS)
  • An initial statement of the goals of RAT, the roadmap, the protocol and the process of testing these resources for usability and effectiveness
  • A presentation, poster, and round table at SSC 2019 (Mainz)

We would appreciate suggestions for items that should be included in the literature reviews, “beta testers” and critical readers for the roadmap and protocol (from as many disciplines and modelling approaches as possible), reactions (whether positive or negative) to the initiative itself (including joining it!) and participation in the various activities we plan at Mainz. If you are interested in any of these roles, please email Melania Borit (melania.borit@uit.no).

References

Grimm, V., Berger, U., DeAngelis, D. L., Polhill, J. G., Giske, J. and Railsback, S. F. (2010) ‘The ODD Protocol: A Review and First Update’, Ecological Modelling, 221(23):2760–2768. doi:10.1016/j.ecolmodel.2010.08.019


Achter, S., Borit, M., Chattoe-Brown, E., Palaretti, C. and Siebers, P.-O.(2019) Cherchez Le RAT: A Proposed Plan for Augmenting Rigour and Transparency of Data Use in ABM. Review of Artificial Societies and Social Simulation, 4th June 2019. https://roasss.wordpress.com/2019/06/04/rat/

Vision for a more rigorous “replication first” modelling journal

By David Hales

A proposal for yet another journal? My first reaction to any such suggestion is to argue that we already have far too many journals. However, hear me out.

My vision is for a modelling journal that is far more rigorous than what we currently have. It would be aimed at work in which a significant aspect of the result is derived from the output of a complex system type computer model in an empirical way.

I propose that the journal would incorporate, as part of the reviewing process, at least one replication of the model by an independent reviewer. Hence models would be verified as independently replicated before being published.

In addition the published article would include an appendix detailing the issues raised during the replication process.

Carrying out such an exercise would almost certainly lead to clarifications of the original article such that it would easier to replicate by others and give more confidence in the results. Both readers and authors would gain significantly from this.

I would be much more willing to take modelling articles seriously if I knew they had already been independently replicated.

Here is a question that immediately springs to mind: replicating a model is a time consuming and costly business requiring significant expertise. Why would a reviewer do this?

One possible solution would be to provide an incentive in the following form. Final articles published in the journal would include the replicators as co-authors of the paper – specifically credited with the independent replication work that they write up in the appendix.

This would mean that good, clear and interesting initial articles would be desirable to replicate since the reviewer / replicator would obtain citations.

This could be a good task for an able graduate student allowing them to gain experience, contacts and citations.

Why would people submit good work to such a journal? This is not as easy to answer. It would almost certainly mean more work from their perspective and a time delay (since replication would almost certainly take more time than traditional review). However there is the benefit of actually getting a replication of their model and producing a final article that others would be able to engage with more easily.

Also I think it would be necessary, given the above aspects, to put quite a high bar on what is accepted for review / replication in the first place. Articles reviewed would have to present significant and new results in areas of fairly wide interest. Hence incremental or highly specific models would be ruled out. Also articles that did not contain enough detail to even attempt a replication would be rejected on that basis. Hence one can envisage a two stage review process where the editors decide if the submitted paper is “right” for a full replication review before soliciting replications.

My vision is of a low output, high quality, high initial rejection journal. Perhaps publishing 3 articles every 6 months. Ideally this would support a reputation for high quality over time.


Hales, D. (2018) Vision for a more rigorous “replication first” modelling journal. Review of Artificial Societies and Social Simulation, 5th November 2018. https://roasss.wordpress.com/2018/11/05/dh/

Escaping the modelling crisis

By Emile Chappin

Let me explain something I call the ‘modelling crisis’. It is something that many modellers in one way or another encounter. By being aware we may resolve such a crisis, avoid frustration, and, hopefully, save the world from some bad modelling.

Views on modelling

I first present two views on modelling. Bear with me!

[View 1: Model = world] The first view is that models capture things in the real world pretty well and some models are pretty much representative. And of course this is true. You can add many things to the model and you may have. But if you think along this line, you start seeing the model as if it is the world. At one point you may become rather optimistic about modelling. Well, I really mean to say, you become naive: the model is fabulous. The model can help anyone with any problem only somewhat related to the original idea behind this model. You don’t waste time worrying about the details and sell the model to everyone listening, and you’re quite convinced in the way you do this. You may come to a belief that the model is the truth.

[View 2: Model ≠ world] The second view is that the model can never represent the world adequately enough to really predict what is going on. And of course this is true. But if you think along this line, you can get pretty frustrated: the model is never good enough, because factor A is not in there, mechanism B is biased, etc. At one point you may become quite pessimistic about ‘the model’: will it help anyone anytime soon? You may come to the belief that the model is nonsense (and that modelling itself is nonsense).

As a modeller, you may encounter these views in your modelling journey: in how your model is perceived, in how your model is compared to other models and in the questions you’re asked about your model. And it may the case that you get stuck in either one of the views yourself. And you may not be aware, but you might still behave accordingly.

Possible consequences

Let’s conceive the idea of having a business doing modelling: we are ambitious and successful! What might happen over time with our business and with our clients?

  • Your clients love your business – Clients can ask us any question and they will get a very precise answer back! Anytime we give a good result, a result that comes true in some sense, we are praised, and our reputation grows. Anytime we give a bad result, something that turns out quite different from what we’d expected, we can blame the particular circumstances which could not have been foreseen or argue that this result is basically out of the original scope. Our modesty makes our reputation grow! And it makes us proud!
  • Assets need protection – Over time, our model/business reputation becomes more and more important. You should ask us for any modelling job because we’ve modelled (this) for decades. Any question goes into our fabulous model that can Answer Any Question In A Minute (AAQIAM). Our models became patchworks because of questions that were not so easy to fit in. But obviously, as a whole, the model is great. More than great: it is the best! The models are our key assets: they need to be protected. In a board meeting we decide that we should not show the insides of our models anymore. We should keep them secret.
  • Modelling schools – Habits emerge of how our models are used, what kind of analysis we do, and which we don’t. Core assumptions that we always make with our model are accepted and forgotten. We get used to those assumptions, we won’t change them anyway and probably we can’t. It is not really needed to think about the consequences of those assumptions anyway. We stick to the basics, represent the results in the way that the client can use it, and mention in footnotes how much detail is underneath, and that some caution is warranted in interpretation of the results. Other modelling schools may also emerge, but they really can’t deliver the precision/breadth of what we have been doing for decades, so they are not relevant, not really, anyway.
  • Distrusting all models – Another kind of people, typically not your clients, start distrusting the modelling business completely. They get upset in discussions: why worry about discussing the model details: there is always something missing anyway. And it is impossible to quantify anything, really. They decide that it is better to ignore model geeks completely and just follow their own reasoning. It doesn’t matter that this reasoning can’t be backed up with facts (such as a modelled reality). They don’t believe that it be done could anyway. So the problem is not their reasoning, it is the inability of quantitative science.

Here is the crisis

At this point, people stop debating the crucial elements in our models and the ambition for model innovation goes out of the window. I would say, we end up in a modelling crisis. At some point, decisions have to be made in the real world, and they can either be inspired by good modelling, by bad modelling, or not by modelling at all.

The way out of the modelling crisis

How can such a modelling crisis be resolved? First, we need to accept that the model ≠ world, so we don’t necessarily need to predict. We also need to accept that modelling can certainly be useful, for example when it helps to find clear and explicit reasoning/underpinning of an argument.

  • We should focus more on the problem that we really want to address, and for that problem, argue how modelling can actually contribute to a solution for that problem. This should result in better modelling questions, because modelling is a means, not an end. We should stop trying to outsource the thinking to a model.
  • Following from this point, we should be very explicit about the modelling purpose: in what way does the modelling contribute to solving the problem identified earlier? We have to be aware that different kinds of purposes lead to different styles of reasoning, and, consequently, to different strengths and weaknesses in the modelling that we do. Consider the differences between prediction, explanation, theoretical exposition, description and illustration as types of modelling purpose, see (Edmonds 2017), (more types are possible).
  • Following this point, we should accept the importance of creativity and the process in modelling. Science is about reasoned, reproducible work. But, paradoxically, good science does not come from a linear, step-by-step approach. Accepting this, modelling can help both in the creative process by exploring possible ideas, explicating an intuition as well as in justification and underpinning of a very particular reasoning. Next, it is important avoid mixing these perspectives up. The modelling process is as relevant as the model outcome. In the end, the reasoning should be standalone and strong (also without the model). But you may have needed the model to find it.
  • We should adhere to better modelling practices and develop the tooling to accommodate them. For ABM, many successful developments are ongoing: we should be explicit and transparent about assumptions we are making (e.g. the ODD protocol, Polhill et al. 2008). We should develop requirements and procedures for modelling studies, with respect to how the analysis is performed, also if clients don’t ask for it (validity, robustness of findings, sensitivity of outcomes, analysis of uncertainties). For some sectors, such requirements have been developed. The discussion around practices and validation is prominent in ABMs, where some ‘issues’ may be considered obvious (see for instance Heath, Hill, and Ciarallo 2009, the effort through CoMSES), but they should be asked for any type of model. In fact, we should share, debate on, and work with all types of models that are already out there (again, such as the great efforts through CoMSES), and consider forms of multi-modelling to save time and effort and benefit from strengths of different model formalisms.
  • We should start looking for good examples: get inspired and share them. Personally I like Basic Traffic from the NetLogo library, it does not predict you where traffic jams are, but it clearly shows the worth of slowing down earlier. Another may be the Limits to Growth, irrespective of its predictive power.
  • We should start doing it better ourselves, so that we show others that it can be done!

References

Heath, B., Hill, R. and Ciarallo, F. (2009). A Survey of Agent-Based Modeling Practices (January 1998 to July 2008). Journal of Artificial Societies and Social Simulation 12(4):9. http://jasss.soc.surrey.ac.uk/12/4/9.html

Polhill, J. Gary, Dawn Parker, Daniel Brown, and Volker Grimm. (2008). Using the ODD Protocol for Describing Three Agent-Based Social Simulation Models of Land-Use Change. Journal of Artificial Societies and Social Simulation 11(2): 3.

Edmonds, B. (2017) Five modelling purposes, Centre for Policy Modelling Discussion Paper CPM-17-238, http://cfpm.org/discussionpapers/192/


Chappin, E.J.L. (2018) Escaping the modelling crisis. Review of Artificial Societies and Social Simulation, 12th October 2018. https://roasss.wordpress.com/2018/10/12/ec/

A bad assumption: a simpler model is more general

By Bruce Edmonds

Thread6

If one adds in some extra detail to a general model it can become more specific — that is it then only applies to those cases where that particular detail held. However the reverse is not true: simplifying a model will not make it more general – it is just you can imagine it would be more general.

To see why this is, consider an accurate linear equation, then eliminate the variable leaving just a constant. The equation is now simpler, but now will only be true at only one point (and only be approximately right in a small region around that point) – it is much less general than the original, because it is true for far fewer cases.

This is not very surprising – a claim that a model has general validity is a very strong claim – it is unlikely to be achieved by arm-chair reflection or by merely leaving out most of the observed processes.

Only under some special conditions does simplification result in greater generality:

  • When what is simplified away is essentially irrelevant to the outcomes of interest (e.g. when there is some averaging process over a lot of random deviations)
  • When what is simplified away happens to be constant for all the situations considered (e.g. gravity is always 9.8m/s^2 downwards)
  • When you loosen your criteria for being approximately right hugely as you simplify (e.g. mover from a requirement that results match some concrete data to using the model as a vague analogy for what is happening)

In other cases, where you compare like with like (i.e. you don’t move the goalposts such as in (3) above) then it only works if you happen to know what can be safely simplified away.

Why people think that simplification might lead to generality is somewhat of a mystery. Maybe they assume that the universe has to obey ultimately laws so that simplification is the right direction (but of course, even if this were true, we would not know which way to safely simplify). Maybe they are really thinking about the other direction, slowly becoming more accurate by making the model mirror the target more. Maybe this is just a justification for laziness, an excuse for avoiding messy complicated models. Maybe they just associate simple models with physics. Maybe they just hope their simple model is more general.

References

Aodha, L. and Edmonds, B. (2017) Some pitfalls to beware when applying models to issues of policy relevance. In Edmonds, B. & Meyer, R. (eds.) Simulating Social Complexity – a handbook, 2nd edition. Springer, 801-822.

Edmonds, B. (2007) Simplicity is Not Truth-Indicative. In Gershenson, C.et al. (2007) Philosophy and Complexity. World Scientific, 65-80.

Edmonds, B. (2017) Different Modelling Purposes. In Edmonds, B. & Meyer, R. (eds.) Simulating Social Complexity – a handbook, 2nd edition. Springer, 39-58.

Edmonds, B. and Moss, S. (2005) From KISS to KIDS – an ‘anti-simplistic’ modelling approach. In P. Davidsson et al. (Eds.): Multi Agent Based Simulation 2004. Springer, Lecture Notes in Artificial Intelligence, 3415:130–144.


Edmonds, B. (2018) A bad assumption: a simpler model is more general. Review of Artificial Societies and Social Simulation, 28th August 2018. https://roasss.wordpress.com/2018/08/28/be-2/

Continuous model development: a plea for persistent virtual worlds

By Mike Bithell

Thread5

Consider the following scenario:-

A policy maker has a new idea and wishes to know what might be the effect of implementing the associated policy or regulation. They ask an agent-based modeller for help. The modeller replies that the situation looks interesting. They will start a project to develop a new model from scratch and it will take three years. The policy maker replies they want the results tomorrow afternoon. On being informed that this is not possible (or that the model will of necessity be bad) the policy maker looks elsewhere.

Clearly this will not do. Yet it seems, at present that every new problem leads to the development of a new “hero” ABM developed from the ground up. I would like to argue that for practical policy problems we need a different approach., one in which persistent models are developed that outlast the life of individual research projects, and are continuously developed, updated and challenged against the kinds of multiple data streams that are now becoming available in the social realm.

By way of comparison consider the case of global weather and climate models. These are large models developed over many years. They are typically hundreds of thousands of lines of code, and are difficult for any single individual to fully comprehend. Their history goes back to the early 20th century, when Richardson made the first numerical weather forecast for Europe, doing all the calculations by hand. Despite the forecast being incorrect (a better understanding of how to set up initial conditions was needed) he was not deterred: His vision of future forecasts involved a large room full of “computers” (i.e. people) each calculating the numerics for their part of the globe and pooling the results to enable forecasting in real time (Richardson 1922). With the advent of digital computing in the 1950s these models began to be developed systematically, and their skill at representing the weather and climate has undergone continuous improvement (see e.g. Lynch 2006). At the present time there are perhaps a few tens of such models that operate globally, with various strengths and weaknesses,. Their development is very far from complete: The systems they represent are complex, and the models very complicated, but they gain their effectiveness through being run continually, tested and re-tested against data,, with new components being repeatedly improved and developed by multiple teams over the last 50 years. They are not simple to set up and run, but they persist over time and remain close to the state-of-the –art and to the research community.

I suggest that we need something like this in agent-based modelling. A suite of communally developed models that are not abstract, but that represent substantial real systems, such as large cities, countries or regions,; that are persistent and continually developed, on a code base that is largely stable; and more importantly undergo continual testing and validation. At the moment this last part of the loop is not typically closed: models are developed and scenarios proposed, but the model is not then updated in the light of new evidence, and then re-used and extended: the PhD has finished, or the project ended, and the next new problem leads to a new model. Persistent models, being repeatedly run by many, would gradually have bugs and inconsistencies discovered and corrected(although new ones would also inevitably be introduced), could be very complicated because continually tested, and continually available for interpretation and development of understanding, and become steadily better documented. Accumulated sets of results would show their strengths and weaknesses for particular kinds of issues, and where more work was most urgently needed.

In this way when, say ,the mayor London wanted to know the effect of a given policy, a set of state-of the-art models of London would already exist which could be used to test out the policy given the best available current knowledge. The city model would be embedded in a lager model or models of the UK, or even the EU, so as to be sure that boundary conditions would not be a problem, and to see what the wider unanticipated consequences might be. The output from such models might be very uncertain: “forecasts” (saying what will happen, as opposed to what kind of things might happen) would not be the goal, but the history of repeated testing and output would demonstrate what level of confidence was warranted in the types of behaviour displayed by the results: preferably this would at least be better than random guesswork. Nor would such a set of models rule out or substitute for other kinds of model: idealised, theoretical, abstract and applied case studies would still be needed to develop understanding and new ideas.

The kind of development of models for policy is already taking place in to an extent (see e.g. Waldrop 2018), but is currently very limited. However, in the face of current urgent and pressing problems, such as climate change, eco-system destruction, global financial insecurity, continuing widespread poverty and failure to approach sustainable development goals in any meaningful way, the ad-hoc make-a-new-model every time approach is inadequate. To build confidence in ABM as a tool that can be relied on for real world policy we need persistent virtual worlds.

References

Lynch, P. (2006). The Emergence of Numerical Weather Prediction: Richardson’s Dream. Cambridge: Cambridge University Press.

Richardson, L. F. (1922). Weather Prediction by Numerical Process (reprinted 2007). Cambridge: Cambridge University Press.

Waldrop, M. (2018). Free Agents. Science, 13, 360, 144-147. DOI: 10.1126/science.360.6385.144


Bithell, M. (2018) Continuous model development: a plea for persistent virtual worlds, Review of Artificial Societies and Social Simulation, 22nd August 2018. https://rofasss.org/2018/08/22/mb

A Forgotten Contribution: Jean-Paul Grémy’s Empirically Informed Simulation of Emerging Attitude/Career Choice Congruence (1974)

By Edmund Chattoe-Brown

Thread1

Since this is new venture, we need to establish conventions. Since JASSS has been running since 1998 (twenty years!) it is reasonable to argue that something un-cited in JASSS throughout that period has effectively been forgotten by the ABM community. This contribution by Grémy is actually a single chapter in a book otherwise by Boudon (a bibliographical oddity that may have contributed to its neglect. Grémy also appears to have published mostly in French, which may also have had an effect. An English summary of his contribution to simulation might be another useful item for RofASSS.) Boudon gets 6 hits on the JASSS search engine (as of 31.05.18), none of which mention simulation and Gremy gets no hits (as does Grémy: unfortunately it is hard to tell how online search engines “cope with” accents and thus whether this is a “real” result).

Since this book is still readily available as a mass-market paperback, I will not reprise the argument of the simulation here (and its limitations relative to existing ABM methodology could be a future RofASSS contribution). Nonetheless, even approximately empirical modelling in the mid-seventies is worthy of note and the article is early to say other important things (for example about simulation being able to avoid “technical assumptions” – made for solubility rather than realism).

The point of this contribution is to draw attention to an argument that I have only heard twice (and only found once in print) namely that we should look at the form of real data as an initial justification for using ABM at all (please correct me if there are earlier or better examples). Grémy (1974, p. 210) makes the point that initial incongruities between the attitudes that people hold (altruistic versus selfish) and their career choices (counsellor versus corporate raider) can be resolved in either direction as time passes (he knows this because Boudon analysed some data collected by Rosenberg at two points from US university students) as well as remaining unresolved and, as such, cannot readily be explained by some sort of “statistical trend” (that people become more selfish as they get older or more altruistic as they become more educated). He thus hypothesises (reasonably it seems to me) that the data requires a model of some sort of dynamic interaction process that Grémy then simulates, paying some attention to their survey results both in constraining the model and analysing its behaviour.

This seems to me an important methodological practice to rescue from neglect. (It is widely recognised anecdotally that people tend to use the research methods they know and like rather than the ones that are suitable.) Elsewhere (Chattoe-Brown 2014), inspired by this argument, I have shown how even casually accessed attitude change data really looks nothing like the output of the (very popular) Zaller-Deffuant model of opinion change (very roughly, 228 hits in JASSS for Deffuant, 8 for Zaller and 9 for Zaller-Deffuant though hyphens sometimes produce unreliable results for online search engines too.) The attitude of the ABM community to data seems to be rather uncomfortable. Perhaps support in theory and neglect in practice would sum it up (Angus and Hassani-Mahmooei 2015, Table 5 in section 4.5). But if our models can’t even “pass first base” with existing real data (let alone be calibrated and validated) should we be too surprised if what seems plausible to us does not seem plausible to social scientists in substantive domains (and thus diminishes their interest in ABM as a “real method?”) Even if others in the ABM community disagree with my emphasis on data (and I know that they do) I think this is a matter that should be properly debated rather than just left floating about in coffee rooms (as such this is what we intend RofASSS to facilitate). As W. C. Fields is reputed to have said (though actually the phrase appears to have been common currency), we would wish to avoid ABM being just “Another good story ruined by an eyewitness”.

References

Angus, Simon D. and Hassani-Mahmooei, Behrooz (2015) ‘“Anarchy” Reigns: A Quantitative Analysis of Agent-Based Modelling Publication Practices in JASSS, 2001-2012’, Journal of Artificial Societies and Social Simulation, 18(4):16.

Chattoe-Brown, Edmund (2014) ‘Using Agent Based Modelling to Integrate Data on Attitude Change’, Sociological Research Online, 19(1):16.

Gremy, Jean-Paul (1974) ‘Simulation Techniques’, in Boudon, Raymond, The Logic of Sociological Explanation (Harmondsworth: Penguin), chapter 11:209-227.


Chattoe-Brown, E. (2018) A Forgotten Contribution: Jean-Paul Grémy’s Empirically Informed Simulation of Emerging Attitude/Career Choice Congruence (1974). Review of Artificial Societies and Social Simulation, 1st June 2018. https://roasss.wordpress.com/2018/06/01/ecb/