Tag Archives: multiple models

Policy modelling requires a multi-scale, multi-criteria and diverse-framing approach

Lessons from a session at SocSimFest 2023

By Gary Polhill and Juliette Rouchier

Bruce Edmonds organized a stimulating session at the SocSimFest held 15-16 March 2023. Entitled, “How to do wrong using Social Simulation – as a result of arrogance, laziness or ill intent.” One of the presentations (Rouchier 2023) covered the modelling used to justify lockdowns in various countries. This talk concentrated on the harms lockdowns caused and suggested that they were unnecessary; a discourse that is not the most present in the media and takes an alternative view to the idea that a scientific consensus exists in real-time and could lead to the best decision. There was some ‘vigorous’ debate afterwards, but here we expand on an important point that came out of that debate: Modelling the effects of Covid to inform policy on managing the disease requires much more than epidemiological modelling. We might speculate, then, whether in general, modelling for policy intervention means ensuring greater coverage of the wider system than might be deemed strictly necessary for the immediate policy question in hand. Though such speculation has apparent consequences for model complicatedness that go beyond Sun et al.’s (2016) ‘Medawar zone’ for empirical ABM, there is an interpretation of this requirement for extended coverage that is also compatible with preferences for simpler models.

Going beyond the immediate case of Covid would require the identification of commonalities in the processes of decision making that could be extrapolated to other situations. We are less interested in that here than making the case that simulation for policy analysis in the context of Covid entails greater coverage of the system than might be expected given the immediate questions in hand. The expertise of Rouchier means our focus is primarily on the experience of Covid in France. Generalisation of the principle to wider coverage beyond this case is a matter of conjecture that we propose making.

Handling Covid: an evaluation that is still in progress

Whether governments were right or wrong to implement lockdowns of varying severity is a matter that will be for historians to debate. During that time various researchers developed models, including agent-based models, that were used to advise policymakers on handling an emergency situation predicated on higher rates of mortality and hospitalisation.[1] Assessing the effectiveness of the lockdowns empirically would require us to be able to collect data from parallel universes in which they were not implemented. The fact that we cannot do this leaves us, as Rouchier pointed out, either comparing outcomes with models’ predictions – which is problematic if the models are not trusted – or comparing outcomes across countries with different lockdown policies – which has so far been inconclusive even if it weren’t problematic because of differences in culture and geography from one nation to another. Such comparison will nevertheless be the most fruitful in time, although the differences of implementation among countries will doubtless induce long discussions about the most important factors to consider for defining relevant Non-Pharmaceutical Interventions (NPI).[2]

The effects of the lockdowns themselves on people’s mental and physical health, child development, and on the economy and working practices, are also the subject of emerging data post-lockdown. Some of these consequences have been severe – not least for the individuals concerned. Though not germane to the central argument of this brief document, it is worth noting that the same issue with unobservable parallel universes means that scientific rather than historical assessment of whether these outcomes are better or worse than any outcomes for those individuals and society at large in the absence of lockdowns is also impossible.

For our purposes, the most significant aspect of this second point is that the discussion has arisen after the epidemic emergency: First, it is noteworthy that these matters could perfectly well have been considered in models during the crisis. Indeed, contrasting the positive effect (saving lives or saving a public service) with negative effects (children’s withdrawal from education,[3] increasing psychological distress, not to mention domestic abuse – Usta et al. 2021) is typically what cost-benefit analysis, based on multi-criteria modelling, is supposed to elicit (Roy, 1996). In modelling for public policy decision-making, it is particularly clear that there is no universally ‘superior’ or ‘optimum’ indicator to be used for comparing options; but several indicators to evaluate diverse alternative policies. A discussion about the best decision for a population has to be based on the best description of possible policies and their evaluations according to the chosen indicators (Pluchinotta et al., 2022). This means that a hierarchy of values has to be made explicit to justify the hierarchy of most important indicators. During the Covid crisis one question that could have been asked (should it not have been) is: who is the most vulnerable population to protect? Is it old people because of disease or young people because of potential threats to their future chances in life?

Second, it is clear that this answer could vary in time with information and the dynamics of variant of Covid. For example, as soon as Omicron was announced by South Africa’s doctors, it was said to be less dangerous than earlier variants.[4] In that sense, the discussion of balancing priorities, in a dynamic way, in this historical period is very typical of what could also be central in other public discussions where the whole population is facing a highly uncertain future, and where the evolution of knowledge is rapid. But it is difficult to know in advance which indicators should be considered since some signals can be very weak at some point in time, but then be confirmed as highly relevant later on – essentially this is the problem of the omitted-variable bias.

The discussion about risks to mental health was vivid in 2020 already: some psychologists were soon showing the risk for people with mental health issues or women with violent husbands;[5] while the discussion about effects on children started early in 2020 (Singh et al., 2020). However this issue only started to be considered publicly by the French government a year and a half later. One interpretation of the time differential is that the signal seemed too weak for non-specialists early on, when the specialists had already seen the disturbing signs.

In science, we have no definitive rule to decide when a weak signal at present will later turn out to be truly significant. Rather, it is ‘society’ as a whole that decides on the value of different indicators (sometimes only with the wisdom of hindsight) and scientists should provide knowledge on these. This goes back to classical questions of hierarchy of values about the diverse stakes people hold in questions that recur perennially in decision science.

Modelling for policy making: tension between complexity and elegance?

Edmonds (2022) presented a paper at SSC 2022 outlining four ‘levels’ of rigour needed when conducting social simulation exercises, reserving the highest level for using agent-based models to inform public policy. Page limitations for conference submissions meant he was unable to articulate in the paper as full a list of the stipulations for rigour in the fourth level as he was for the other three. However, Rouchier’s talk at the SocSimFest brought into sharp focus that at least one of those stipulations is that models of public policy should always have broader coverage of the system than is strictly necessary for the immediate question in hand. This has the strange-seeming consequence that exclusively epidemiological models are inadequate to the task of modelling how a contagious illness should be controlled. For any control measure that is proposed, such a stipulation entails that the model be capable of exploring not only the effect on disease spread, but also potential wider effects of relevance to societal matters generally in the domain of other government departments: such as, energy, the environment, business, justice, transportation, welfare, agriculture, immigration, and international relations.

The conjecture that for any modelling challenge in complex or wicked systems, thorough policy analysis entails broader system coverage than the immediate problem in hand (KIDS-like – see Edmonds & Moss 2005), is controversial for those who like simple, elegant, uncomplicated models (KISS-like). Worse than that, while Sun et al. (2016), for example, acknowledge that the Medawar zone for empirical models is at a higher level of complicatedness than for theoretical models, the coverage implied by this conjecture is broader still. The level of complicatedness implied will also be controversial for those who don’t mind complex, complicated models with large numbers of parameters. It suggests that we might need to model ‘everything’, or that policy models are then too complicated for us to understand, and as a consequence, perhaps using simulations to analyse policy scenarios is inappropriate. The following considers each of these objections in turn with a view to developing a more nuanced analysis of the implications of such a conjecture.

Modelling ‘everything’ is a matter that is the easiest to reject as a necessary implication of modelling ‘more things’. Modelling, say, the international relations implications of proposed national policy on managing a global pandemic, does not mean one is modelling the lifecycle of extremophile bacteria, or ocean-atmosphere interactions arising from climate change, or the influence of in-home displays on domestic energy consumption, to choose a few random examples of a myriad things that are not modelled. It is not even clear what modelling ‘everything’ really means – phenomena in social and environmental systems can be modelled at diverse levels of detail, at scales from molecular to global. Fundamentally, it is not even clear that we have anything like a perception of ‘everything’, and hence no basis for representing ‘everything’ in a model. Further, the Borges argument[6] holds in that having a model that would be the same as reality makes it useless to study as it is then wiser to study reality directly. Neither universal agreement nor objective criteria[7] exist for the ‘correct’ level of complexity and complication at which to model phenomena, but failing to engage with a broader perspective on the systemic effects of phenomena leaves one open to the kind of excoriating criticism exemplified by Keen’s (2021) attack on economists’ analysis of climate change.

At the other end of the scale, doing no modelling at all is also a mistake. As Polhill and Edmonds (2023) argue, leaving simulation models out of policy analysis essentially makes the implicit assumption that human cognition is adequate to the task of deciding on appropriate courses of action facing a complex situation. There is no reason (besides hubris) to believe that this is necessarily the case, and plenty of evidence that it is not. Not least of such evidence is that many of the difficult decisions we now face around such things as managing climate change and biodiversity have been forced upon us by poor decision-making in the past.

Cognitive constraints and multiple modellers

This necessity to consider many dimensions of social life within models that are ‘close enough’ to the reality to convince decision-makers induces a risk of ‘over’-complexity. Its main default is the building of models that are too complicated for us to understand. This is a valid concern in the sense that building an artificial system that, though simpler than the real world, is still beyond human comprehension, hardly seems a worthwhile activity. The other concern is that of the knowledge needed by the modeller: how can one person be able to imagine an integrative model which includes (for example) employment, transportation, food, schools, international economy, and any other issue which is needed for a serious analysis of the consequences of policy decisions?

Options that still entail broader coverage but not a single overcomplicated integrated model are: 1/ step-by-step increase in the complexity of the model in a community of practitioners; 2/ confrontation of different simple models with different hypotheses and questions; 3/ superposition and integration of simple models into one, through a serious work on the convergence of ontologies (with a nod to Voinov and Shugart’s (2013) warnings).

  1. To illustrate this first approach, let us stay with the case of the epidemic model. One can start with an epidemiological simulation where we fit to the fact that if we tell people to stay at home then we will cut hospitalizations by enough that health services will not be overwhelmed. But then we are worried that this might have a negative impact on the economy. So we bring in modelling components that simulate all four combinations of person/business-to-person/business transactions, and this shows that if we pay businesses to keep employees on their books, we have a chance of rebooting the economy after the pandemic is over.[8] But then we are concerned that businesses might lie about who their employees are, that office-workers who can continue to work at home are privileged over those with other kinds of job, that those with a child-caring role in their households are disadvantaged in their ability to work at home if the schools are closed, and that the mental health of those who live alone is disproportionately impacted through cutting off their only means of social intercourse. And so more modelling components are brought in. In a social context, this incremental addition of the components of a complicated model may mean it is more comprehensible to the team of modellers.

    If the policy maker really wants to increase her capacity to understand her possible actions with models, she would also have to make sure to invite several researchers for each modelled aspect, as no single social science is free of controversy, and the discussions about consequences should rely on contradictory theories. If a complex model has to be built, it can indeed propose different hypotheses on behaviours, functioning of economy, sanitary risks depending on the type of encounter.[9] It is then more of a modelling ‘framework’ with several options for running various different specific models with different implementation options. One advantage of modelling that applies even in cases where Borges argument applies, is that testing out different hypotheses is harmless for humans (unlike empirical experiments) and can produce possible futures, seen as trajectories that can then be evaluated in real time with relevant indicators. With a serious group of modellers and statisticians, providing contradicting views, not only can the model be useful for developing prospective views, but also the evaluation of hypotheses could be done rapidly.

  2. The CoVprehension Collective (2020) showed another approach, more fluid in its organisation. The idea is “one question, one model”, and the constraint is to have a pedagogic result where a simple phenomenon would be illustrated. Different modellers could realise one or several models on simple issues, so that to explain one simple phenomenon, paradox or show a tautological affirmation. In the process, the CoVprehension team would create moving sub-teams, associate on one specific issue and propose their hypotheses and results in a very simple manner. Such a protocol was purely oriented for explanation to the public, but the idea would be to organise a similar dynamic for policy makers. The system is cheap (it was self-organised with researchers and engineers, with zero funding but their salary) and it sustained lively discussions, with different points of view. Questions could go from differences between possible NPI, with an algorithmic description of these NPI that could make the understanding of processes more precise, to an explanation of the reason why French supermarkets were missing toilet paper. Twenty questions were answered in two months, thus indicating that such a working dynamic is feasible in real-time and provides useful and interesting inputs to discussion.

  3. To avoid too complicated a model, the fusion of both approaches could also be conceived: the addition of dimensions to a large central model could be first tested through simple models, the main process of explanation could be found and this process reproduced within the theoretical framework of the large model. This would constitute both a production of diversity of points of view and models and the aggregation of all points of view in one large model. The fact that the model should be large is important, as ‘size matters’ in diffusion models (e.g. Gotts & Polhill 2010), and thus simple, small models would benefit from this work as well.

As some modellers like complex models (and can think with the help of these models) and others rely on simple stories to increase their understanding of the world, only the creation of an open community of diverse specialists and modellers, KISS as well as KIDS, such a collective step-by-step elaboration could resolve the central problem that ‘too complicated to understand’ is a relative, rather than absolute, assessment. One very important prerequisite of such collaboration is that there is genuine ‘horizontality’ of the community: where each participant is listened to seriously whatever their background, which can be an issue in interdisciplinary work, especially involving people of mixed career stage. Be that as it may, the central conjecture remains: agent-based modelling for policy analysis should be expected to involve even more complicated (assemblages of) models than empirical agent-based modelling.

Endnotes

[1] This point is the one that is the most disputed ex-post in France, where lockdowns were justified (as in other countries) to “protect hospitals”. In France, the idea was not to avoid deaths of older people (90% of deaths were people older than 60, this demographic being 20% of the population), but to avoid hospitals being overwhelmed with Covid cases taking the place of others. In France, the official data regarding hospital activity states that Covid cases represented 2% of hospitalizations and 5% of Intensive Care Unit (ICU) utilizations. Further, hospitals halved their workload from March to May 2020 because of almost all surgery being blocked to keep ICUs free. (In October-December 2020, although the epidemic was more significant at that time, the same decision was not taken). Arguably, 2% of 50% not an increase that should destroy a functioning system – https://www.atih.sante.fr/sites/default/files/public/content/4144/aah_2020_analyse_covid.pdf – page 2. Fixing dysfunction in the UK’s National Health Services has been a long-standing, and somewhat tedious, political and academic debate in the country for years, even before Covid (e.g. Smith 2007; Mannion & Braithwaite 2012; Pope & Burnes 2013; Edwards & Palmer 2019).

[2] An interesting difference that French people heard about was that in the UK, people could wander on the beaches during lockdowns, whereas in France it was forbidden to go to any natural area – indeed, it was forbidden to go further than one kilometre from home. Whereas, in fact, in the UK the lockdown restrictions were a ‘devolved matter’, with slightly different policies in each of the UK’s four member nations, though very similar legislation. In England, Section 6 paragraph (1) of The Health Protection (Coronavirus, Restrictions) (England) Regulations 2020 stated that “no person may leave the place where they are living without reasonable excuse”, with paragraph (2) covering examples of “reasonable excuses” including for exercise, obtaining basic necessities, and accessing public services. Similar wording was used by other devolved nations. None of the regulations stipulated any maximum distance from a person’s residence that these activities had to take place – interpretation of the UK’s law is based on the behaviour of the ‘reasonable person’ (the so-called ‘man on the Clapham omnibus’ – see Łazowski 2021). However, differing interpretations of what ‘resonable people’ would do between the citizenry and the constabulary led to fixed penalty notices being issued for taking exercise more than five miles (eight kilometres) from home – e.g. https://www.theguardian.com/uk-news/2021/jan/09/covid-derbyshire-police-to-review-lockdown-fines-after-walkers-given-200-penalties In Scotland, though the Statutory Instrument makes no mention of any distance, people were ‘given guidance’ not to travel more than five miles from home for leisure and recreation, and were still advised to stay “within their local area” after this restriction was lifted (see https://www.gov.scot/news/travel-restrictions-lifted/).

[3] A problem which seems to be true in various countries https://www.unesco.org/en/articles/new-academic-year-begins-unesco-warns-only-one-third-students-will-return-school
https://www.kff.org/other/report/kff-cnn-mental-health-in-america-survey/
https://eu.usatoday.com/in-depth/news/health/2023/05/15/school-avoidance-becomes-crisis-after-covid/11127563002/#:~:text=School%20avoidant%20behavior%2C%20also%20called,since%20the%20COVID%2D19%20pandemic
https://www.bbc.com/news/health-65954131

[4] https://www.cityam.com/omicron-mild-compared-to-delta-south-african-doctors-say/

[5] https://www.terrafemina.com/article/coronavirus-un-psy-alerte-sur-les-risques-du-confinement-pour-la-sante-mentale_a353002/1

[6] In 1946, in El hacedor, Borges described a country where the art of building maps is so excessive in the need for details that the whole country is covered by the ideal map. This leads to obvious troubles and the disappearance of geographic science in this country.

[7] See Brewer et al. (2016) if the Akaike Information Criterion is leaping to your mind at this assertion.

[8]  Although this assumption might not be stated that way anymore, as the hypothesis that many parts of the economy would hugely suffer started to reveal its truth even before the end of the crisis: a problem that had only been anticipated by a few prominent economists (e.g. Boyer, 2020). This failure shows mainly that the description that most economists make of the economy is too simplistic – as often reproached – to be able to anticipate massive disruptions. Everywhere in the world the informal sector was almost completely stopped as people could neither work in their job nor meet for information market exchange, which causes misery for a huge part of the earth population, among the most vulnerable (ILO, 2022).

[9] A real issue that became obvious is that the nosocomial infections are (still) extremely important in hospitals, as the evaluation of the number of infections in hospitals for Covid19 are estimated to be 20 to 40% during the first epidemic (Abbas et al. 2021).

Acknowledgements

GP’s work is supported by the Scottish Government Rural and Environment Science and Analytical Services Division (project reference JHI-C5-1).

References

Abbas, M., Nunes, T. R., Martischang, R., Zingg, W., Iten, A., Pittet, D. & Harbarth, S. (2021) Nosocomial transmission and outbreaks of coronavirus disease 2019: the need to protect both patients and healthcare workers. Antimicrobial Resistance & Infection Control 10, 7. doi:10.1186/s13756-020-00875-7

Boyer, R. (2020) Les capitalismes à l’épreuve de la pandémie, La découverte, Paris.

Brewer, M., Butler, A. & Cooksley, S. L. (2016) The relative performance of AIC, AICC and BIC in the presence of unobserved heterogeneity. Methods in Ecology and Evolution 7 (6), 679-692. doi:10.1111/2041-210X.12541

the CoVprehension Collective (2020) Understanding the current COVID-19 epidemic: one question, one model. Review of Artificial Societies and Social Simulation, 30th April 2020. https://rofasss.org/2020/04/30/covprehension/

Edmonds, B. (2022) Rigour for agent-based modellers. Presentation to the Social Simulation Conference 2022, Milan, Italy. https://cfpm.org/rigour/

Edmonds, B. & Moss, S. (2005) From KISS to KIDS – an ‘anti-simplistic’ modelling approach. Lecture Notes in Artificial Intelligence 3415, pp. 130-144. doi:10.1007/978-3-540-32243-6_11

Edwards, N. & Palmer, B. (2019) A preliminary workforce plan for the NHS. British Medical Journal 365 (8203), I4144. doi:10.1136/bmj.l4144

Gotts, N. M. & Polhill, J. G. (2010) Size matters: large-scale replications of experiments with FEARLUS. Advances in Complex Systems 13 (04), 453-467. doi:10.1142/S0219525910002670

ILO Brief (2020) Impact of lockdown measures on the informal economy, https://www.ilo.org/global/topics/employment-promotion/informal-economy/publications/WCMS_743523/lang–en/index.htm

Keen, S. (2021) The appallingly bad neoclassical economics of climate change. Globalizations 18 (7), 1149-1177. doi:10.1080/14747731.2020.1807856

Łazowski, A. (2021) Legal adventures of the man on the Clapham omnibus. In Urbanik, J. & Bodnar, A. (eds.) Περιμένοντας τους Bαρβάρους. Law in a Time of Constitutional Crisis: Studies Offered to Mirosław Wyrzykowski. C. H. Beck, Munich, Germany, pp. 415-426. doi:10.5771/9783748931232-415

Mannion, R. & Braithwaite, J. (2012) Unintended consequences of performance measurement in healthcare: 20 salutary lessons from the English National Health Service. Internal Medicine Journal 42 (5), 569-574. doi:10.1111/j.1445-5994.2012.02766.x

Pluchinotta I., Daniell K.A., Tsoukiàs A. (2002), “Supporting Decision Making within the Policy Cycle: Techniques and Tools”, In M. Howlett (ed.), Handbook of Policy Tools, Routledge, London, 235 – 244. https://doi.org/10.4324/9781003163954-24.

Polhill, J. G. & Edmonds, B. (2023) Cognition and hypocognition: Discursive and simulation-supported decision-making within complex systems. Futures 148, 103121. doi:10.1016/j.futures.2023.103121

Pope, R. & Burnes, B. (2013) A model of organisational dysfunction in the NHS. Journal of Health Organization and Management 27 (6), 676-697. doi:10.1108/JHOM-10-2012-0207

Rouchier, J. (2023) Presentation to SocSimFest 23 during session ‘How to do wrong using Social Simulaion – as a result of arrogance, laziness or ill intent’. https://cfpm.org/slides/JR-Epi+newTINA.pdf

Roy, B. (1996) Multicriteria methodology for decision analysis, Kluwer Academic Publishers.

Singh, S, Roy, D., Sinha, K., Parveen, S., Sharma G. & Joshic, G. (2020) Impact of COVID-19 and lockdown on mental health of children and adolescents: A narrative review with recommendations, Psychiatry Research. 2020 Nov; 293: 113429, 10.1016/j.psychres.2020.113429

Smith, I. (2007). Breaking the dysfunctional dynamics. In: Building a World-Class NHS. Palgrave Macmillan, London, pp. 132-177. doi:10.1057/9780230589704_5

Sun, Z., Lorscheid, I., Millington, J. D., Lauf, S., Magliocca, N. R., Groeneveld, J., Balbi, S., Nolzen, H., Müller, B., Schulze, J. & Buchmann, C. M. (2016) Simple or complicated agent-based models? A complicated issue. Environmental Modelling & Software 86, 56-67. doi:10.1016/j.envsoft.2016.09.006

Usta, J., Murr, H. & El-Jarrah, R. (2021) COVID-19 lockdown and the increased violence against women: understanding domestic violence during a pandemic. Violence and Gender 8 (3), 133-139. doi:10.1089/vio.2020.0069

Voinov, A. & Shugart, H. H. (2013) ‘Integronsters’, integral and integrated modeling. Environmental Modelling & Software 39, 149-158. doi:10.1016/j.envsoft.2012.05.014


Polhill, G. and Rouchier, J. (2023) Policy modelling requires a multi-scale, multi-criteria and diverse-framing approach. Review of Artificial Societies and Social Simulation, 31 Jul 2023. https://rofasss.org/2023/07/31/policy-modelling-necessitates-multi-scale-multi-criteria-and-a-diversity-of-framing


© The authors under the Creative Commons’ Attribution-NoDerivs (CC BY-ND) Licence (v4.0)

Understanding the current COVID-19 epidemic: one question, one model

By the CoVprehension Collective

(A contribution to the: JASSS-Covid19-Thread)

On the evening of 16th March 2020, the French president, Emmanuel Macron announced the start of a national lockdown, for a period of 15 days. It would be effective from noon the next day (17th March). On the 18th March 2020 at 01:11 pm, the first email circulated in the MicMac team, who had been working on the micro-macro modelling of the spread of a disease in a transportation network a few years. This email was the start of CoVprehension. After about a week of intense emulation, the website was launched, with three questions answered. A month later, there were about fifteen questions on the website, and the group was composed of nearly thirty members from French research institutions, in a varied pool of disciplines, all contributing as volunteers from their confined residence.

CoVprehension in principles

This rapid dynamic originates from a very singular context. It is tricky to analyse it given that the COVID-19 crisis is still developing. However, we can highlight a few fundamental principles leading the project.

The first principle is undeniably a principle of action. To become an actor of the situation first, but this invitation extends to readers of the website, allowing them to run the simulation and to change its parameters; but also more broadly by giving them suggestions on how to link their actions to this global phenomenon which is hard to comprehend. This empowerment also touches upon principles of social justice and, longer term, democracy in the face of this health crisis. By accompanying the process of social awareness, we aim to guide the audience towards a free and informed consent (cf. code of public health) in order to confront the disease. Our first principle is spelled out on theCoVprehension website in the form of a list of objectives that the CoVprehension collective set themselves:

  • Comprehension (the propagation of the virus, the actions put in place)
  • Objectification (giving a more concrete shape to this event which is bigger than us and can be overwhelming)
  • Visualisation (showing the mechanisms at play)
  • Identification (the essential principles and actions to put in place)
  • Do something (overcoming fears and anxieties to become actors in the epidemic)

The second founding principle is that of an interdisciplinary scientific collective formed on a voluntary basis. CoVprehension is self-organised and rests on three pillars: volunteering, collaborative work and the will to be useful during the crisis by offering a space for information, reflection and interaction with a large audience.

As a third principle, we have agility and reactivity. The main idea of the project is to answer questions that people ask, with short posts based on a model or data analysis. This can only be done if the delay between question and answer remains short, which is a real challenge given the complexity of the subject, the high frequency of scientific literature being produced since the beginning of the crisis, and the large number of unknowns and uncertainties which characterise it.

The fourth principle, finally, is the autonomy of groups which form to answer the questions. This allows a multiplicity of perspectives and points of view, sometimes divergent. This necessity draws on the acknowledgement by the European simulation community that a lack of pluralism is even more harmful to support public decision-making than a lack of transparency.

A collaborative organisation and an interactive website

The four principles have lead us, quite naturally, to favour a functioning organisation which exploits short and frequent retroactions and relies of adapted tools. The questions asked online through a Framasoft form are transferred to all CoVprehension members, while a moderator is in charge of replying to them quickly and personally. Each question is integrated into a Trello management board, which allows each member of the collective to pick the questions they want to contribute to and to follow their progression until publication. The collaboration and debate on each of the questions is done using VoIP application Discord. Model prototypes are mostly developed on the Netlogo platform (with some javascript exceptions). Finally, the whole project and website is hosted on GitHub.

The website itself (https://covprehension.org/en) is freely accessible online. Besides the posts answering questions, it contains a simulator to rerun and reproduce the simulations showcased in the posts, a page with scientific resources on the COVID-19 epidemic, a page presenting the project members and a link to the form allowing anyone to ask the collective a question.

On the 28th April 2020, the collective counted 29 members (including 10 women): medical doctors, researchers, engineers and specialists in the fields of computer science, geography, epidemiology, mathematics, economy, data analysis, medicine, architecture and digital media production. The professional statuses of the team members vary (from PhD student to full professor, from intern to engineer, from lecturer to freelancer) whereas their skills complement each other (although a majority of them are complex system modellers). The collective effort enables CoVprehension to scale up on information collection, sharing and updating. This is also fueled by debates during the first take on questions by small teams. Such scaling up would otherwise only be possible in large epidemiology laboratories with massive funding. To increase visibility, the content of the website, initially all in French, is being translated into English progressively as new questions are published.

Simple simulation models

When a question requires a model, especially so for the first questions, our choice has been to build simple models (cf. Question 0). Indeed, the objective of CoVprehension models is not to predict. It is rather to describe, to explain and to illustrate some aspects of the COVID-19 epidemic and its consequences on population. KISS models (“Keep It Simple, Stupid!” cf. Edmonds  & Moss 2004) for the opposition between simple and “descriptive” models) seem better suited to our project. They can unveil broad tendencies and help develop intuitions about potential strategies to deal with the crisis, which can then be also shared with a broad audience.

By choosing a KISS posture, we implicitly reject KIDS postures in such crisis circumstances. Indeed, if the conditions and processes modelled were better informed and known, we could simulate a precise dynamic and generate a series of predictions and forecasts. This is what N. Ferguson’s team did for instance, with a model initially developed with regards to the H5N1 flu in Asia (Ferguson et al., 2005). This model was used heavily to inform public decision-making in the first days of the epidemic in the United Kingdom. Building and calibrating such models takes an awfully long time (Ferguson’s project dates back from 2005) and requires teams and recurring funding which is almost impossible to get nowadays for most teams. At the moment, we think that uncertainty is too big, and that the crisis and the questions that people have do not always necessitate the modelling of complex processes. A large area of the space of social questions mobilised can be answered without describing the mechanisms in so much detail. It is possible that this situation will change as we get information from other scientific disciplines. For now, demonstrating that even simple models are very sensitive to many elements which remain uncertain shows that the scientific discourse could gain by remaining humble: the website reveals how little we know about the future consequences of the epidemic and the political decisions made to tackle it.

Feedback on the questions received and answered

At the end of April, twenty-seven questions have been asked to the CoVprehension collective, through the online form. Seven of them are not really questions (they are rather remarks and comments from people supporting the initiative). Some questions happen to have been asked by colleagues and relatives. The intended outreach has not been fully realised since the website seems to reach people who are already capable of looking for information on the internet. This was to be expected given the circumstances. Everyone who has done some scientific outreach knows how hard it is to reach populations who have not been been made aware of or are interested in scientific facts in the first place. Some successful initiatives (like “les petits débrouillards” or “la main à la pâte” in France) spread scientific knowledge related to recent publications in collaboration with researchers, but they are much better equipped for that (since they do not rely mostly on institutional portals like we do). This large selection bias in our audience (almost impossible to solve, unless we create some specific buzz… which we will then have to handle in terms of new question influx, which is not possible at the moment given the size of the collective and its organisation) means that our website has been protected from trolling. However, we can expect that it might be used within educational programs for example, where STEM teachers could make the students use the various simulators in a question and answer type of game.

Figure 1 shows that the majority of questions are taken by small interdisciplinary teams of two or three members. The most frequent collaborations are between geographers and computer scientists. They are often joined by epidemiologists and mathematicians, and recently by economists. Most topics require the team to build and analyse a simulation model in order to answer the question. The timing of team formations reflects the arrival of new team members in the early days of the project, leading to a large number of questions to be tackled simultaneously. Since April, the rhythm has slowed, reflecting also the increasing complexity of questions, models and answers, but also the marginal “cost” of this investment on the other projects and responsibilities of the researchers involved.

Visualisation of the questions tackled by Covprehension.

Figure 1. Visualisation of the questions tackled by Covprehension.

Initially, the website prioritised questions on simulation and aggregation effects specifically connected with the distribution models of diffusion. For instance, the first questions aimed essentially at showing the most tautological results: with simple interaction rules, we illustrated logically expected effects. These results are nevertheless interesting because while they are trivial to simulation practitioners, they also serve to convince profane readers that they are able to follow the logic:

  • Reducing the density of interactions reduces the spread of the virus and therefore: maybe the lockdown can alter the infection curve (cf. Question 2 and Question 3).
  • By simply adding a variable for the number of hospital beds, we can visualise the impact of lockdown on hospital congestion (cf. Question 7).

For more elaborate questions to be tackled (and to rationalise the debates):

  • Some alternative policies have been highlighted (the Swedish case: Question 13; the deconfinement: Question 9);
  • Some indicators with contradicting impacts have been discussed, which shows the complexity of political decisions and leads readers to question the relevance of some of these indicators (cf. Question 6);
  • The hypotheses (behavioural ones in particular) have been largely discussed, which highlights the way in which the model deviates from what it represents in a simplified way (cf. Question 15).

More than half of the questions asked could not be answered through modelling. In the first phase of the project, we personnally replied to these questions and directed the person towards robust scientific websites or articles where their question could be better answered. The current evolution of the project is more fundamental: new researchers from complementary disciplines have shown some interest in the work done so far and are now integrated into the team (including two medical doctors operating in COVID-19 centres for instance). This will broaden the scope of questions tackled by the team from now on.

Our work fits into a type of education to critical thinking about formal models, one that has long been known as necessary to a technical democracy (Stengers, 2017). At this point, the website can be considered both as a result by itself and as a pilot to function as a model for further initiatives.

Conclusion

Feedback on the CoVprehension project has mostly been positive, but not exempt from limits and weaknesses. Firstly, the necessity of a prompt response has been detrimental to our capacity to fully explore different models, to evaluate their robustness and look for unexpected results. Model validation is unglamorous, slow and hard to communicate. It is crucial nevertheless when assessing the credibility to be associated with models and results. We are now trying to explore our models in parallel. Secondly, the website may suggest a homogeneity of perspectives and a lack of debates regarding how questions are to be answered. These debates do take place during the assessment of questions but so far remain hidden from the readers. It shows indirectly in the way some themes appear in different answers treated from different angles by different teams (for example: the lockdown, treated in question 6, 7, 9 and 14). We consider the possibility of publishing alternative answers to a given question in order to show this possible divergence. Finally, the project is facing a significant challenge: that of continuing its existence in parallel with its members’ activities, with the number of members increasing. The efforts in management, research, editing, publishing and translation have to be maintained while the transaction costs are going up as the size and diversity of the collective increases, as the debates become more and more specific and happen on different platforms… and while new questions keep arriving!

References

Edmonds, B., & Moss, S. (2004). From KISS to KIDS–an ‘anti-simplistic’ modelling approach. In International workshop on multi-agent systems and agent-based simulation (pp. 130-144). Springer, Berlin, Heidelberg. doi:10.1007/978-3-540-32243-6_11

Ferguson, N. M., Cummings, D. A., Cauchemez, S., Fraser, C., Riley, S., Meeyai, A. & Burke, D. S. (2005). Strategies for containing an emerging influenza pandemic in Southeast Asia. Nature, 437(7056), 209-214. doi:10.1038/nature04017

Stengers I. (2017). Civiliser la modernité ? Whitehead et les ruminations du sens commun, Dijon, Les presses du réel. https://www.lespressesdureel.com/EN/ouvrage.php?id=3497


the CoVprehension Collective (2020) Understanding the current COVID-19 epidemic: one question, one model. Review of Artificial Societies and Social Simulation, 30th April 2020. https://rofasss.org/2020/04/30/covprehension/


© The authors under the Creative Commons’ Attribution-NoDerivs (CC BY-ND) Licence (v4.0)