Tag Archives: simulation

Teaching highly intelligent primary school kids energy system complexity

By Emile Chappin

An energy system complexity lecture for kids?

I was invited to open the ‘energy theme’ at a primary school with a lecture on energy and wanted to give it a complexity and modelling flavour. And I wondered… can you teach this to a large group of 7-to-12-year-old children, all highly intelligent but so far apart in their development? What works in this setting, and what doesn’t? How long should I make such a lecture? Can I explain and let them feel what research is? Can I do some experiments? Can I share what modelling is? What concepts should I include? What are such kids interested in? What do they know? What would they expect? Many of these questions haunted me for some time, and I thought it would be nice to share my observations from simply going for it.

I outline my learning goals, observations from the first few minutes, approach, some later observations, and main takeaways. I end with a plea for teaching social simulation at primary schools. This initiative is part of the Special Interest Group on Education (http://www.essa.eu.org/sig/sig-education/) of the European Social Simulation Association.

Learning goals

I wanted to provide the following insights to these kids:

  • Energy is everywhere; you can feel, hear, and see it all around you. Even from outer space, you can see where cities are when you look at the earth. All activities you do require some form of energy.
  • Energy comes in different forms and can be converted into other forms.
  • Everyone likes to play games, and we can use games even to do research and perform experiments.
  • Doing research/being a researcher involves asking (sometimes odd) questions, looking very carefully at things, studying how the world works and why and solving problems.
  • You can use computers to perform social simulations that help us think. Not necessarily to answer questions but as tools that help us think about the world, do many experiments and study their implications.

First observations

It is easy to notice that this is a rather ambitious plan. Nevertheless, I learnt very quickly that these kids knew a lot! And that they (may) question everything from every angle. They are keen to understand and eager to share what they know. I was happy I could connect with them quickly by helping them get seated, chit chatting before the start.

My approach

I used symbols/analogies to explain deep concepts and layered the meaning, deepening the understanding layer by layer. I came back to and connected all these layers. This enables kids from different age groups to understand the lecture on their level. An example is that I mentioned early on how I was interested in as a kid in black holes. I explained that black holes were discovered by thinking carefully about how the universe works and that theoretical physicists concluded there might be something like a black hole. It was decades later before a real black hole was photographed. The fact that you can imagine and reason how something may exist that you cannot (yet) observe… that much later has been proven to exist. This is what research can be; it is incredible how this happened. Much later in the talk, I connected this to how you can use the computer to imagine, dream up, and test ideas because, in many cases, it is tough to do in real life.

I asked many questions and listened carefully to the answers. Some answers are way off-topic, and it is essential to guide these kids enough so the story continues, but at the same time, the kids stay on board. An early question was… do you like to play games? It is so lovely to have a group of kids cheering that they want to play games! It provides a connection. Another question I asked was, what is the similarity between a wind turbine and a sheep? Kids laughed at the funny question and picture but also came up with the desired answer (they both need/convert energy). Other creative solutions were that the colours were similar, and the shape had similarities. These are fun answers and also correct!

Because of these questions, kids came up with many great insights and good observations. This was astonishing. Research is looking at something carefully, like a snail. A black hole comes from a collapsing star, and our sun will collapse at some point in time. One kid knew that the object I brought was a kazoo… so I invited him to try imitating the sound of Max Verstappen’s Formula One car. And, of course, I had a few more kazoos, so we made a few reasonable attempts. I went back to 5+ times during the next hour to some of these kids’ great remarks: it helped to keep connected to the kids.

I played the ‘heroes and cowards’ game (similar to the ‘heroes and cowards’ model from the Netlogo library). This was a game as well as an experiment. I announced that it only works if we all follow the rules carefully. I made the kids silently think about what would happen. It worked reasonably well: they could observe the emergent phenomenon of the group cluttering and exploding, although it went somewhat rough.

A fantastic moment was to explain the concept of validity to young kids simply by experiencing it. I pressed on the fact that following the rules was crucial for our experiment to be valid and that stumbling and running was problematic for our outcomes. It was amazing that this landed so well; I was fortunate that the circumstances allowed this.

After playing this game a couple of times, with hilarious moments and chaos, I showed how you could replicate what happened in a simulation in Netlogo. I showed that you could repeat it rapidly and do variations that would be hard to do with the kids. I even showed the essential piece of code. And I remarked that the kids on the computer did listen better to me.

Later observations

We planned to take 60 minutes, observe how far we could go, and adapt. I noticed I could stretch it to 75 minutes, far longer than I thought was possible. I used less material than I thought I would use for 60 minutes. I started relatively slow and with a personal touch. I was happy I had flexible material and could adapt to what the kids shared. I used my intuition and picked up objects that were around that I could use to tell the story.

Some sweet things happened. When I first arrived, one kid played the piano in the general area. He played with much possess, small but intense. I said in the lecture that I heard him play and that I was also into music. Raised hand: ‘Will you play something for us at the end’? Of course, I promised this! During the lecture… I repeatedly promised I would; the question came back many times. I played a song the young piano player liked to hear.

These children were very open and direct. I had expected that but was still surprised by how honest and straightforward. ‘Ow, now I lost my question, this happens to me all the time’. I said: do you know I also have this quite often? It is perfectly normal. It doesn’t matter. If the question comes back, you can raise your hand again. If it doesn’t, then that is also just fine.

My takeaways

  • Do fun things, even if it is not perfectly connected. It helps with the attention span and provides a connection. Using humour helps us all to be open to learning.
  • Ask many questions, and use your intuition when asking questions. Listen to the answers, remember important ones (and who gave them), and refer back to them. If something is off-topic, you can ‘park’ that question and remark or answer it politely without dismissing it.
  • Act things out very dramatically. I acted very brave and very cowardly when introducing the game. I used two kids to show the rules and kept referring to them using their names.
  • Don’t overprepare but make the lecture flexible. Where can you expand? What do you need to do to make the connection, to make it stick?
  • I was happy that the class teachers helped me by asking a crucial question at the end, allowing me to close a couple of circles. Keep the teacher active and involved in the lecture. Invite them beforehand to do so.
  • A helpful hint I received afterwards was to use a whiteboard (or something similar) to develop a visual record of concepts and keywords raised by the kids, e.g., in the form of a mind map.
  • Kids keep surprising you all the way. One asked about NetLogo: ‘Can you install this software on Windows 8?’ It is free. You can try it out yourselves, I said. ‘Can you upgrade windows 8 to windows 10’. Well, this depends on your computer, I said. These kids keep surprising you!
  • You can teach complexity, emergence, and agent-based modelling without using words. But if kids use a term, acknowledge it. In this case: ‘But with AI….’ This is AI. It is worth exploring how to reach and teach children crucial complexity insights at a young age.

Teaching social simulation in primary schools

I plea that it is worth the effort to inspire children at a young age with crucial insights into what research is, into complexity, and into using social simulation. In this specific lecture, I only briefly touched on the use of social simulation (right at the end). It is a fantastic gift to help someone see complexity unfold before their eyes and to catch a glimpse of the tools that show the ingredients of this complexity. And it is a relatively small step towards unravelling social behaviour through social simulations. I’m tempted to conclude that you could teach young children a basic understanding of social simulation with relatively small educational modules. Even if it is implicit through games and examples, they may work effectively if placed carefully in the social environment that the different age groups typically face. Showing social structures emerging from behavioural rules. Illustrating different patterns emerging due to stochasticity and changes in assumptions. Dreaming up basic (but distinct) codified decision rules about actual (social) behaviour you see around you. If this becomes an immersive experience, such educational modules have the potential to contribute to an intuitive understanding of what social simulations are and how they can be used. Children may be inspired to learn to see and understand emergent phenomena around them from an early age; they may become the thinkers of tomorrow. And for the kids I met on this occasion: I’d be amazed if none of them became researchers one day. I hope that if you get the chance, you also give it a go and share your experience! I’m keen to hear and learn!


Chappin, E. (2023) Teaching highly intelligent primary school kids energy system complexity. Review of Artificial Societies and Social Simulation, 19 Apr 2023. https://rofasss.org/2023/04/19/teachcomplex


© The authors under the Creative Commons’ Attribution-NoDerivs (CC BY-ND) Licence (v4.0)