Tag Archives: AI

Nigel Gilbert

By Corinna Elsenbroich & Petra Ahrweiler

The first piece on winners of the European Social Simulation Association’s Rosaria Conte Outstanding Contribution Award for Social Simulation.

Gilbert, a former sociologist of science, has been one of the chief links in Britain between computer scientists and sociologists of science” [1, p. 294]

Nigel has always been and still is a sociologist – not only of science, but also of technology, innovation, methods and many other subfields of sociology with important contributions in theory, empirical research and sociological methods.

He has pioneered a range of sociological areas such as Sociology of Scientific Knowledge, Secondary Analysis of Government Datasets, Access to Social Security Information, Social Simulation, and Complexity Methods of Policy Evaluation.

Collins is right, however, that Nigel is one of the chief links between sociologists and computer scientists in the UK and beyond. This earned him to be elected as the first practising social scientist elected as a Fellow of the Royal Academy of Engineering (1999). As the principal founding father of agent-based modelling as a method for the social sciences in Europe, he initiated, promoted and institutionalised a completely novel way of doing social sciences through the Centre for Research in Social Simulation (CRESS) at the University of Surrey, the Journal of Artificial Societies and Social Simulation (JASSS), founded Sociological Research Online (1993) and Social Research Update. Nigel has 100s of publications on all aspects of social simulation and seminal books like: Simulating societies: the computer simulation of social phenomena (Gilbert & Doran 1994), Artificial Societies: The Computer Simulation of Social Phenomena (Gilbert & Conte 1995), Simulation for the Social Scientist (Gilbert &Troitzsch 2005), and Agent-based Models (Gilbert 2019). His entrepreneurial spirit and acumen resulted in over 25 large project grants (across the UK and Europe), often in close collaboration with policy and decision makers to ensure real life impact, a simulation platform on innovation networks called SKIN, and a spin off company CECAN Ltd, training practitioners in complexity methods and bringing their use to policy evaluation projects.

Nigel is a properly interdisciplinary person, turning to the sociology of scientific knowledge in his PhD under Michael Mulkay after graduating in Engineering from Cambridge’s Emmanuel College. He joined the Sociology Department at the University of Surrey in 1976 where he became professor of sociology in 1991. Nigel was appointed Commander of the Order of the British Empire (CBE) in 2016 for contributions to engineering and social sciences.

He was the second president of the European Social Simulation Association ESSA, the originator of the SIMSOC mailing list, launched and edited the Journal of Artificial Societies and Social Simulation from 1998-2014 and he was the first holder of the Rosaria Conte Outstanding Contribution Award for Social Simulation in 2016, an unanimous decision by the ESSA Management Committee.

Despite all of this, all these achievements and successes, Nigel is the most approachable, humble and kindest person you will ever meet. In any peril he is the person that will bring you a step forward when you need a helping hand. On asking him, after getting a CBE etc. what is the recognition that makes him most happy, he said, with the unique Nigel Gilbert twinkle in his eye, “my Rosaria Conte Award”.

References

Collins, H. (1995). Science studies and machine intelligence. In Handbook of Science and Technology Studies, Revised Edition (pp. 286-301). SAGE Publications, Inc., https://doi.org/10.4135/9781412990127

Gilbert, N., & Doran, R. (Eds.). (1994). Simulating societies: the computer simulation of social phenomena. Routledge.

Gilbert, N. & Conte, R. (1995) Artificial Societies: the computer simulation of social life. Routeledge. https://library.oapen.org/handle/20.500.12657/24305

Gilbert, N. (2019). Agent-based models. Sage Publications.

Gilbert, N., & Troitzsch, K. (2005). Simulation for the social scientist. Open University Press; 2nd edition.


Elsenbroich, C. & Ahrweiler, P. (2025) Nigel Gilbert. Review of Artificial Societies and Social Simulation, 3 Mar 2025. https://rofasss.org/2025/04/03/nigel-gilbert


© The authors under the Creative Commons’ Attribution-NoDerivs (CC BY-ND) Licence (v4.0)

Rosaria Conte (1952–2016)

By Mario Paolucci

This is the “header piece” for a short series on those who have been awarded the “Rosaria Conte Outstanding Award for Social Simulation” awarded by the European Social Simulation Association every two years. It makes no sense to describe those who have got this award without information about the person which it is named after, so this is about her.

Rosaria Conte was one of the first researchers in Europe to recognize and champion agent-based social simulation. She became a leader of what would later become the ESSA community in the 1990s, chairing the 1997 ICCS&SS – First International Conference on Computer Simulation and the Social Sciences in Cortona, Italy, and co-editing with Nigel Gilbert the book Artificial Societies (Gilbert & Conte, 1995). With her unique approach, her open approach to interdisciplinarity, and her charisma, she inspired and united a generation of researchers who still pursue her scientific endeavour.

Known as a relentless advocate for cognitive agents in the agent-based modeling community, Conte stood firmly against the keep-it-simple principle. Instead, she argued that plausible agents—those capable of explaining complex social phenomena where immergence (Castelfranchi, 1998; Conte et al., 2009) is as critical as emergence—require explicit, theory-backed representations of cognitive artifacts (Conte & Paolucci, 2011).

Born in Foggia, Italy, Rosaria graduated in philosophy at the University of Rome La Sapienza in 1976, to later join the Italian National Research Council (Consiglio Nazionale delle Ricerche, CNR). In the ‘90s, she founded and directed the Laboratory of Agent-Based Social Simulation (LABSS) at the Institute of Cognitive Sciences and Technologies (ISTC-CNR). Under her leadership, LABSS became an internationally renowned hub for research on agent-based modeling and social simulation. Conte’s work at LABSS focused on the development of computational models to study complex social phenomena, including cooperation, reputation, and social norms.

Influenced by collaborators such as Cristiano Castelfranchi and Domenico Parisi, whose guidance helped shape her studies of social behavior through computational models, she proposed the integration of cognitive and social theories into agent-based models. Unlike approaches that treated agents as simple rule-followers, Rosaria emphasized the importance of incorporating cognitive and emotional processes into simulations. Her 1995 book, Cognitive and Social Action (Conte & Castelfranchi, 1995), became a landmark text in the field. The book employed their characteristic pre-formal approach—using logic formulas in order to illustrate relationships between concepts, without a fully developed system of postulates or theorem-proving tools. The reason for this approach was, as they noted, that “formalism sometimes disrupts implicit knowledge and theories” (p. 14). The ideas in the book, together with her attention to the dependance relations between agents (Sichman et al., 1998) would go on to inspire Rosaria’s approach to simulation throughout her career.

Rosaria’s research extended to the study of reputation and social norms. For reputation (Conte & Paolucci, 2002), an attempt to create a specific, cognitive-based model has been made with the Repage approach (Sabater et al., 2006). Regarding social norms (Andrighetto et al., 2007), she explored how norms emerge, spread, and influence individual and collective behavior. This work had practical implications for a range of fields, including organizational behavior, policy design, and conflict resolution. She had a key role in the largest recent attempt to create a center for complexity and social sciences, the FuturICT project (Conte et al., 2012).

Rosaria Conte held several leadership positions. She served as President of the European Social Simulation Society (ESSA) from 2010 to 2012. Additionally, she was President of the Italian Cognitive Science Association (AISC) from 2008 to 2009, member of the Italian Bioethics Committee (CNB) from 2013 to 2016, and Vice President of the Italian CNR Scientific Council.

You can watch an interview with Rosaria about FuturICT here: https://www.youtube.com/watch?v=ghgzt5zgGP8

References

Andrighetto, G., Campenni, M., Conte, R., & Paolucci, M. (2007). On the immergence of norms: A normative agent architecture. Proceedings of AAAI Symposium, Social and Organizational Aspects of Intelligence. http://www.aaai.org/Library/Symposia/Fall/fs07-04.php

Castelfranchi, C. (1998). Simulating with Cognitive Agents: The Importance of Cognitive Emergence. Proceedings of the First International Workshop on Multi-Agent Systems and Agent-Based Simulation, 26–44. http://portal.acm.org/citation.cfm?id=665578

Conte, R., Andrighetto, G., & Campennì, M. (2009). The Immergence of Norms in Agent Worlds. In H. Aldewereld, V. Dignum, & G. Picard (Eds.), Engineering Societies in the Agents World X< (pp. 1–14). Springer. https://doi.org/10.1007/978-3-642-10203-5_1

Conte, R., & Castelfranchi, C. (1995). Cognitive Social Action. London: UCL Press.

Conte, R., Gilbert, N., Bonelli, G., Cioffi-Revilla, C., Deffuant, G., Kertesz, J., Loreto, V., Moat, S., Nadal, J.-P., Sanchez, A., Nowak, A., Flache, A., San Miguel, M., & Helbing, D. (2012). Manifesto of computational social science. The European Physical Journal Special Topics, 214(1), 325–346. https://doi.org/10.1140/epjst/e2012-01697-8

Conte, R., & Paolucci, M. (2002). Reputation in Artificial Societies—Social Beliefs for Social Order. Springer. https://iris.unibs.it/retrieve/ddc633e2-a83d-4e2e-e053-3705fe0a4c80/Review%20of%20Conte%2C%20Rosaria%20and%20Paolucci%2C%20Mario_%20Reputation%20in%20Artificial%20Socie.pdf

Conte, R., & Paolucci, M. (2011). On Agent Based Modelling and Computational Social Science. Social Science Research Network Working Paper Series. https://doi.org/10.3389/fpsyg.2014.00668

Gilbert, N., & Conte, R. (Eds.). (1995). Artificial Societies: The Computer Simulation of Social Life. Taylor & Francis, Inc. https://library.oapen.org/bitstream/handle/20.500.12657/24305/1005826.pdf

Sabater, J., Paolucci, M., & Conte, R. (2006). Repage: REPutation and ImAGE Among Limited Autonomous Partners. Journal of Artificial Societies and Social Simulation, 9<(2). http://jasss.soc.surrey.ac.uk/9/2/3.html

Sichman, J. S., Conte, R., Demazeau, Y., & Castelfranchi, C. (1998). A social reasoning mechanism based on dependence networks. 416–420.


Paolucci, M. (2023) Rosaria Conte (1952-2016). Review of Artificial Societies and Social Simulation, 11 Feb 2023. https://rofasss.org/2025/02/11/rosariaconte/


© The authors under the Creative Commons’ Attribution-NoDerivs (CC BY-ND) Licence (v4.0)

Quantum computing in the social sciences

By Emile Chappin and Gary Polhill

The dream

What could quantum computing mean for the computational social sciences? Although quantum computing is at an early stage, this is the right time to dream about precisely that question for two reasons. First, we need to keep the computational social sciences ‘in the conversation’ about use cases for quantum computing to ensure our potential needs are discussed. Second, thinking about how quantum computing could affect the way we work in the computational social sciences could lead to interesting research questions, new insights into social systems and their uncertainties, and form the basis of advances in our area of work.

At first glance, quantum computing and the computational social sciences seem unrelated. Computational social science uses computer programs written in high-level languages to explore the consequences of assumptions as macro-level system patterns based on coded rules for micro-level behaviour (e.g., Gilbert, 2007). Quantum computing is in an early phase, with the state-of-the-art being in the order of 100s of qubits [1],[2], and a wide range of applications are envisioned (Hassija, 2020), e.g., in the areas of physics (Di Meglio et al., 2024) and drug discovery (Blunt et al., 2022). Hence, the programming of quantum computers is also in an early phase. Major companies (e.g., IBM, Microsoft, Alphabet, Intel, Rigetti Computing) are investing heavily and have put out high expectations – though how much of this is hyperbole to attract investors and how much it is backed up by substance remains to be seen. This means it is still hard to comprehend what opportunities may come from scaling up.

Our dream is that quantum computing enables us to represent human decision-making on a much larger scale, do more justice to how decisions come about, and embrace the influences people have on each other. It would respect that people’s actual choices are undetermined until they have to show behaviour. On a philosophical level, these features are consistent with how quantum computation operates. Applying quantum computing to decision-making with interactions may help us inform or discover behavioural theory and contribute to complex systems science.

The mysticism around quantum computing

There is mysticism around what qubits are. To start thinking about how quantum computing could be relevant for computational social science, there is no direct need to understand the physics of how qubits are physically set up. However, it is necessary to understand the logic and how quantum computers operate. At the logical level, there are similarities between quantum and traditional computers.

The main similarity is that the building blocks are bits and that they are either 0 or 1, but only when you measure them. A second similarity is that quantum computers work with ‘instructions’. Quantum ‘processors’ alter the state of the bits in a ‘memory’ using programs that comprise sequences of ‘instructions’ (e.g., Sutor, 2019).

There are also differences. They are: 1) qubits are programmed to have probabilities of being a zero or a one, 2) qubits have no determined value until they are measured, and 3) multiple qubits can be entangled. The latter means the values (when measured) depend on each other.

Operationally speaking, quantum computers are expected to augment conventional computers in a ‘hybrid’ computing environment. This means we can expect to use traditional computer programs to do everything around a quantum program, not least to set up and analyse the outcomes.

Programming quantum computers

Until now, programming languages for quantum computing are low-level; like assembly languages for regular machines. Quantum programs are therefore written very close to ‘the hardware’. Similarly, in the early days of electronic computers, instructions for processors to perform directly were programmed directly: punched cards contained machine language instructions. Over time, computers got bigger, more was asked of them, and their use became more widespread and embedded in everyday life. At a practical level, different processors, which have different instruction sets, and ever-larger programs became more and more unwieldy to write in machine language. Higher-level languages were developed, and reached a point where modellers could use the languages to describe and simulate dynamic systems. Our code is still ultimately translated into these lower-level instructions when we compile software, or it is interpreted at run-time. The instructions now developed for quantum computing are akin to the early days of conventional computing, but development of higher-level programming languages for quantum computers may happen quickly.

At the start, qubits are put in entangled states (e.g., Sutor, 2019); the number of qubits at your disposal makes up the memory. A quantum computer program is a set of instructions that is followed. Each instruction alters the memory, but only by changing the probabilities of qubits being 0 or 1 and their entanglement. Instruction sets are packaged into so-called quantum circuits. The instructions operate on all qubits at the same time, (you can think of this in terms of all probabilities needing to add up to 100%). This means the speed of a quantum program does not depend on the scale of the computation in number of qubits, but only depends on the number of instructions that one executes in a program. Since qubits can be entangled, quantum computing can do calculations that take too long to run on a normal computer.

Quantum instructions are typically the inverse of themselves: if you execute an instruction twice, you’re back at the state before the first operation. This means you can reverse a quantum program simply by executing the program again, but now in reverse order of the instructions. The only exception to this is the so-called ‘read’ instruction, by which the value is determined for each qubit to either be 1 or 0. This is the natural end of the quantum program.

Recent developments in quantum computing and their roadmaps

Several large companies such as Microsoft, IBM and Alphabet are investing heavily in developing quantum computing. The route currently is to move up in the scale of these computers with respect to the number of qubits they have and the number of gates (instructions) that can be run. IBM’s roadmap they suggest growing to 7500 instructions, as quickly as 2025[3]. At the same time, programming languages for quantum computing are being developed, on the basis of the types of instructions above. At the moment, researchers can gain access to actual quantum computers (or run quantum programs on simulated quantum hardware). For example, IBM’s Qiskit[4] is one of the first open-source software developing kit for quantum computing.

A quantum computer doing agent-based modelling

The exponential growth in quantum computing capacity (Coccia et al., 2024) warrants us to consider how it may be used in the computational social sciences. Here is a first sketch. What if there is a behavioural theory that says something about ‘how’ different people decide in a specific context on a specifical behavioural action. Can we translate observed behaviour into the properties of a quantum program and explore the consequences of what we can observe? Or, in contrast, can we unravel the assumptions underneath our observations? Could we look at alternative outcomes that could also have been possible in the same system, under the same conceptualization? Given what we observe, what other system developments could have had emerged that also are possible (and not highly unlikely)? Can we unfold possible pathways without brute-forcing a large experiment? These questions are, we believe, different when approached from a perspective of quantum computing. For one, the reversibility of quantum programs (until measuring) may provide unique opportunities. This also means, doing such analyses may inspire new kinds of social theory, or it may give a reflection on the use of existing theory.

One of the early questions is how we may use qubits to represent modelled elements in social simulations. Here we sketch basic alternative routes, with alternative ideas. For each strain we include a very rudimentary application to both Schelling’s model of segregation and the Traffic Basic model, both present in NetLogo model library.

Qubits as agents

A basic option could be to represent an agent by a qubit. Thinking of one type of stylized behaviour, an action that can be taken, then a quantum bit could represent whether that action is taken or not. Instructions in the quantum program would capture the relations between actions that can be taken by the different agents, interventions that may affect specific agents. For Schelling’s model, this would have to imply to show whether segregation takes place or not. For Traffic Basic, this would be what the probability is for having traffic jams. Scaling up would mean we would be able to represent many interacting agents without the simulation to slow down. This is, by design, abstract and stylized. But it may help to answer whether a dynamic simulation on a quantum computer can be obtained and visualized.

Decision rules coded in a quantum computer

A second option is for an agent to perform a quantum program as part of their decision rules. The decision-making structure should then match with the logic of a quantum computer. This may be a relevant ontological reference to how brains work and some of the theory that exists on cognition and behaviour. Consider a NetLogo model with agents that have a variety of properties that get translated to a quantum program. A key function for agents would be that the agent performs a quantum calculation on the basis of a set of inputs. The program would then capture how different factors interact and whether the agent performs specific actions, i.e., show particular behaviour. For Schelling’s segregation model, it would be the decision either to move (and in what direction) or not. For Traffic Basic it would lead to a unique conceptualization of heterogeneous agents. But for such simple models it would not necessarily take benefit of the scale-advantage that quantum computers have, because most of the computation occurs on traditional computers and the limited scope of the decision logic of these models. Rather, it invites to developing much more rich and very different representations of how decisions are made by humans. Different brain functions may all be captured: memory, awareness, attitudes, considerations, etc. If one agent’s decision-making structure would fit in a quantum computer, experiments can already be set up, running one agent after the other (just as it happens on traditional computers). And if a small, reasonable number of agents would fit, one could imagine group-level developments. If not of humans, this could represent companies that function together, either in a value chain or as competitors in a market. Because of this, it may be revolutionary:  let’s consider this as quantum agent-based modelling.

Using entanglement

Intuitively one could consider the entanglement if qubits to be either represent the connection between different functions in decision making, the dependencies between agents that would typically interact, or the effects of policy interventions on agent decisions. Entanglement of qubits could also represent the interaction of time steps, capturing path dependencies of choices, limiting/determining future options. This is the reverse of memory: what if the simulation captures some form of anticipation by entangling future options in current choices. Simulations of decisions may then be limited, myopic in their ability to forecast. By thinking through such experiments, doing the work, it may inspire new heuristics that represent bounded rationality of human decision making. For Schelling’s model this could be the local entanglement restricting movement, it could be restricting movement because of future anticipated events, which contributes to keep the status quo. For Traffic Basic, one could forecast traffic jams and discover heuristics to avoid them which, in turn may inspire policy interventions.

Quantum programs representing system-level phenomena

The other end of the spectrum can also be conceived. As well as observing other agents, agents could also interact with a system in order to make their observations and decisions where the system with which they interact with itself is a quantum program. The system could be an environmental, or physical system, for example. It would be able to have the stochastic, complex nature that real world systems show. For some systems, problems could possibly be represented in an innovative way. For Schelling’s model, it could be the natural system with resources that agents benefit from if they are in the surroundings; resources having their own dynamics depending on usage. For Traffic Basic, it may represent complexities in the road system that agents can account for while adjusting their speed.

Towards a roadmap for quantum computing in the social sciences

What would be needed to use quantum computation in the social sciences? What can we achieve by taking the power of high-performance computing combined with quantum computers when the latter scale up? Would it be possible to reinvent how we try to predict the behaviour of humans by embracing the domain of uncertainty that also is essential in how we may conceptualise cognition and decision-making? Is quantum agent-based modelling at one point feasible? And how do the potential advantages compare to bringing it into other methods in the social sciences (e.g. choice models)?

A roadmap would include the following activities:

  • Conceptualise human decision-making and interactions in terms of quantum computing. What are promising avenues of the ideas presented here and possibly others?
  • Develop instruction sets/logical building blocks that are ontologically linked to decision-making in the social sciences. Connect to developments for higher-level programming languages for quantum computing.
  • Develop a first example. One could think of reproducing one of the traditional models. Either an agent-based model, such as Schelling’s model of segregation or Basic Traffic, or a cellular automata model, such as game-of-life. The latter may be conceptualized with a relatively small number of cells and could be a valuable demonstration of the possibilities.
  • Develop quantum computing software for agent-based modelling, e.g., as a quantum extension for NetLogo, MESA, or for other agent-based modelling packages.

Let us become inspired to develop a more detailed roadmap for quantum computing for the social sciences. Who wants to join in making this dream a reality?

Notes

[1] https://newsroom.ibm.com/2022-11-09-IBM-Unveils-400-Qubit-Plus-Quantum-Processor-and-Next-Generation-IBM-Quantum-System-Two

[2] https://www.fastcompany.com/90992708/ibm-quantum-system-two

[3] https://www.ibm.com/roadmaps/quantum/

[4] https://github.com/Qiskit/qiskit-ibm-runtime

References

Blunt, Nick S., Joan Camps, Ophelia Crawford, Róbert Izsák, Sebastian Leontica, Arjun Mirani, Alexandra E. Moylett, et al. “Perspective on the Current State-of-the-Art of Quantum Computing for Drug Discovery Applications.” Journal of Chemical Theory and Computation 18, no. 12 (December 13, 2022): 7001–23. https://doi.org/10.1021/acs.jctc.2c00574.

Coccia, M., S. Roshani and M. Mosleh, “Evolution of Quantum Computing: Theoretical and Innovation Management Implications for Emerging Quantum Industry,” in IEEE Transactions on Engineering Management, vol. 71, pp. 2270-2280, 2024, https://doi: 10.1109/TEM.2022.3175633.

Di Meglio, Alberto, Karl Jansen, Ivano Tavernelli, Constantia Alexandrou, Srinivasan Arunachalam, Christian W. Bauer, Kerstin Borras, et al. “Quantum Computing for High-Energy Physics: State of the Art and Challenges.” PRX Quantum 5, no. 3 (August 5, 2024): 037001. https://doi.org/10.1103/PRXQuantum.5.037001.

Gilbert, N., Agent-based models. SAGE Publications Ltd, 2007. ISBN 978-141-29496-44

Hassija, V., Chamola, V., Saxena, V., Chanana, V., Parashari, P., Mumtaz, S. and Guizani, M. (2020), Present landscape of quantum computing. IET Quantum Commun., 1: 42-48. https://doi.org/10.1049/iet-qtc.2020.0027

Sutor, R. S. (2019). Dancing with Qubits: How quantum computing works and how it can change the world. Packt Publishing Ltd.


Chappin, E. & Polhill, G (2024) Quantum computing in the social sciences. Review of Artificial Societies and Social Simulation, 25 Sep 2024. https://rofasss.org/2024/09/24/quant


© The authors under the Creative Commons’ Attribution-NoDerivs (CC BY-ND) Licence (v4.0)

Agent-Based Modelling Pioneers: An Interview with Jim Doran

By David Hales and Jim Doran

Jim Doran is an ABM pioneer. Specifically applying ABM to social phenomena. He has been working on these ideas since the 1960’s. His work made a major contribution to establishing the area as it exists today.

In fact Jim has made significant contributions in many areas related to computation such as Artificial Intelligence (AI), Distributed AI (DAI) and Multi-agent Systems (MAS).

I know Jim — he was my PhD supervisor (at the University of Essex) so I had regular meetings with him over a period of about four years. It is hard to capture both the depth and breadth of Jim’s approach. Basically he thinks big. I mean really big! — yet plausibly and precisely. This is a very difficult trick to pull off. Believe me I’ve tried.

He retired from Essex almost two decades ago but continues to work on a number of very innovative ABM related projects that are discussed in the interview.

The interview was conducted over e-mail in August. We did a couple of iterations and included references to the work mentioned.


According to your webpage, at the University of Essex [1] , your background was originally mathematics and then Artificial Intelligence (working with Donald Michie at Edinburgh). In those days AI was a very new area. I wonder if you could say a little about how you came to work with Michie and what kind of things you worked on?

Whilst reading Mathematics at Oxford, I both joined the University Archaeological Society (inspired by the TV archaeologist of the day, Sir Mortimer Wheeler) becoming a (lowest grade) digger and encountering some real archaeologists like Dennis Britten, David Clarke and Roy Hodson, and also, at postgraduate level, was lucky enough to come under the influence of a forward thinking and quite distinguished biometrist, Norman T. J. Bailey, who at that time was using a small computer (an Elliot 803, I think it was) to simulate epidemics — i.e. a variety of computer simulation of social phenomena (Bailey 1967). One day, Bailey told me of this crazy but energetic Reader at Edinburgh University, Donald Michie, who was trying to program computers to play games and to display AI, and who was recruiting assistants. In due course I got a job as an Research Assistant / Junior Research Fellow in Michie’s group (the EPU, for Experimental Programming Unit). During the war Michie had worked with and had been inspired by Alan Turing (see: Lee and Holtzman 1995) [2].

Given this was the very early days of AI, What was it like working at the EPU at that time? Did you meet any other early AI researchers there?

Well, I remember plenty of energy, plenty of parties and visitors from all over including both the USSR (not easy at that time!) and the USA. The people I was working alongside – notably, but not only, Rod Burstall [3], (the late) Robin Popplestone [4], Andrew Ortony [5] – have typically had very successful academic research careers.

I notice that you wrote a paper with Michie in 1966 “Experiments with the graph traverser program”. Am I right, that this is a very early implementation of a generalised search algorithm?

When I took up the research job in Edinburgh at the EPU, in 1964 I think, Donald Michie introduced me to the work by Arthur Samuel on a learning Checkers playing program (Samuel 1959) and proposed to me that I attempt to use Samuel’s rather successful ideas and heuristics to build a general problem solving program — as a rival to the existing if somewhat ineffective and pretentious Newell, Shaw and Simon GPS (Newell et al 1959). The Graph Traverser was the result – one of the first standardised heuristic search techniques and a significant contribution to the foundations of that branch of AI (Doran and Michie 1966) [6]. It’s relevant to ABM because cognition involves planning and AI planning systems often use heuristic search to create plans that when executed achieve desired goals.

Can you recall when you first became aware of and / or began to think about simulating social phenomena using computational agents?

I guess the answer to your question depends on the definition of “computational agent”. My definition of a “computational agent” (today!) is any locus of slightly human like decision-making or behaviour within a computational process. If there is more than one then we have a multi-agent system.

Given the broad context that brought me to the EPU it was inevitable that I would get to think about what is now called agent based modelling (ABM) of social systems – note that archaeology is all about social systems and their long term dynamics! Thus in my (rag bag!) postgraduate dissertation (1964), I briefly discussed how one might simulate on a computer the dynamics of the set of types of pottery (say) characteristic of a particular culture – thus an ABM of a particular type of social dynamics. By 1975 I was writing a critical review of past mathematical modelling and computer simulation in archaeology with prospects (chapter 11 of Doran and Hodson, 1975).

But I didn’t myself use the word “agent” in a publication until, I believe, 1985 in a chapter I contributed to the little book by Gilbert and Heath (1985). Earlier I tended to use the word “actor” with the same meaning. Of course, once Distributed AI emerged as a branch of AI, ABM too was bound to emerge.

Didn’t you write a paper once titled something like “experiments with a pleasure seeking ant in a grid world”? I ask this speculatively because I have some memory of it but can find no references to it on the web.

Yes. The title you are after is “Experiments with a pleasure seeking automaton” published in the volume Machine Intelligence 3 (edited by Michie from the EPU) in 1968. And there was a follow up paper in Machine Intelligence 4 in 1969 (Doran 1968; 1969). These early papers address the combination of heuristic search with planning, plan execution and action within a computational agent but, as you just remarked, they attracted very little attention.

You make an interesting point about how you, today, define a computational agent. Do you have any thoughts on how one would go about trying to identify “agents” in a computational, or other, process? It seems as humans we do this all the time, but could we formalise it in some way?

Yes. I have already had a go at this, in a very limited way. It really boils down to, given the specification of a complex system, searching thru it for subsystems that have particular properties e.g. that demonstrably have memory within their structure of what has happened to them. This is a matter of finding a consistent relationship between the content of the hypothetical agent’s hypothetical memory and the actual input-output history (within the containing complex system) of that hypothetical agent – but the searches get very large. See, for example, my 2002 paper “Agents and MAS in STaMs” (Doran 2002).

From your experience what would you say are the main benefits and limitations of working with agent-based models of social phenomena?

The great benefit is, I feel, precision – the same benefit that mathematical models bring to science generally – including the precise handling of cognitive factors. The computer supports the derivation of the precise consequences of precise assumptions way beyond the powers of the human brain. A downside is that precision often implies particularisation. One can state easily enough that “cooperation is usually beneficial in complex environments”, but demonstrating the truth or otherwise of this vague thesis in computational terms requires precise specification of “cooperation, “complex” and “environment” and one often ends up trying to prove many different results corresponding to the many different interpretations of the thesis.

You’ve produced a number of works that could be termed “computationally assisted thought experiments”, for example, your work on foreknowledge (Doran 1997) and collective misbelief (1998). What do you think makes for a “good” computational thought experiment?

If an experiment and its results casts light upon the properties of real social systems or of possible social systems (and what social systems are NOT possible?), then that has got to be good if only by adding to our store of currently useless knowledge!

Perhaps I should clarify: I distinguish sharply between human societies (and other natural societies) and computational societies. The latter may be used as models of the former, but can be conceived, created and studied in their own right. If I build a couple of hundred or so learning and intercommunicating robots and let them play around in my back garden, perhaps they will evolve a type of society that has NEVER existed before… Or can it be proved that this is impossible?

The recently reissued classic book “Simulating Societies” (Gilbert and Doran 1994, 2018) contains contributions from several of the early researchers working in the area. Could you say a little about how this group came together?

Well – better to ask Nigel Gilbert this question – he organised the meeting that gave rise to the book, and although it’s quite likely I was involved in the choice of invitees, I have no memory. But note there were two main types of contributor – the mainstream social science oriented and the archaeologically oriented, corresponding to Nigel and myself respectively.

Looking back, what would you say have been the main successes in the area?

So many projects have been completed and are ongoing — I’m not going to try to pick out one or two as particularly successful. But getting the whole idea of social science ABM established and widely accepted as useful or potentially useful (along with AI, of course) is a massive achievement.

Looking forward, what do you think are the main challenges for the area?

There are many but I can give two broad challenges:

(i) Finding out how best to discover what levels of abstraction are both tractable and effective in particular modelling domains. At present I get the impression that the level of abstraction of a model is usually set by whatever seems natural or for which there is precedent – but that is too simple.

(Ii) Stopping the use of AI and social ABM being dominated by military and business applications that benefit only particular interests. I am quite pessimistic about this. It seems all too clear that when the very survival of nations, or totalitarian regimes, or massive global corporations is at stake, ethical and humanitarian restrictions and prohibitions, even those internationally agreed and promulgated by the UN, will likely be ignored. Compare, for example, the recent talk by Cristiano Castelfranchi entitled “For a Science-oriented AI and not Servant of the Business”. (Castelfranchi 2018)

What are you currently thinking about?

Three things. Firstly, my personal retirement project, MoHAT — how best to use AI and ABM to help discover effective methods of achieving much needed global cooperation.

The obvious approach is: collect LOTS of global data, build a theoretically supported and plausible model, try to validate it and then try out different ways of enhancing cooperation. MoHAT, by contrast, emphasises:

(i) Finding a high level of abstraction for modelling which is effective but tractable.

(ii) Finding particular long time span global models by reference to fundamental boundary conditions, not by way of observations at particular times and places. This involves a massive search through possible combinations of basic model elements but computers are good at that — hence AI Heuristic Search is key.

(iii) Trying to overcome the ubiquitous reluctance of global organisational structures, e.g. nation states, fully to cooperate – by exploring, for example what actions leading to enhanced global cooperation, if any, are available to one particular state.

Of course, any form of globalism is currently politically unpopular — MoHAT is swimming against the tide!

Full details of MoHAT (including some simple computer code) are in the corresponding project entry in my Research Gate profile (Doran 2018a).

Secondly, Gillian’s Hoop and how one assesses its plausibility as a “modern” metaphysical theory. Gillian’s Hoop is a somewhat wild speculation that one of my daughters came up with a few years ago: we are all avatars in a virtual world created by game players in a higher world who in fact are themselves avatars in a virtual world created by players in a yet higher world … with the upward chain of virtual worlds ultimately linking back to form a hoop! Think about that!

More generally I conjecture that metaphysical systems (e.g. the Roman Catholicism that I grew up with, Gillian’s Hoop, Iamblichus’ system [7], Homer’s) all emerge from the properties of our thought processes. The individual comes up with generalised beliefs and possibilities (e.g. Homer’s flying chariot) and these are socially propagated, revised and pulled together into coherent belief systems. This is little to do with what is there, much more to do with the processes that modify beliefs. This is not a new idea, of course, but it would be good to ground it in some computational modelling.

Again, there is a project description on Research Gate (Doran 2018b).

Finally, I’m thinking about planning and imagination and their interactions and consequences. I’ve put together a computational version of our basic subjective stream of thoughts (incorporating both directed and associative thinking) that can be used to address imagination and its uses. This is not as difficult to come up with as might at first appear. And then comes a conjecture — given ANY set of beliefs, concepts, memories etc in a particular representation system (cf. AI Knowledge Representation studies) it will be possible to define a (or a few) modification processes that bring about generalisations and imaginations – all needed for planning — which is all about deploying imaginations usefully.

In fact I am tempted to follow my nose and assert that:

Imagination is required for planning (itself required for survival in complex environments) and necessarily leads to “metaphysical” belief systems

Might be a good place to stop – any further and I am really into fantasy land…

Notes

  1. Archived copy of Jim Doran’s University of Essex homepage: https://bit.ly/2Pdk4Nf
  2. Also see an online video of some of the interviews, including with Michie, used as a source for the Lee and Holtzman paper: https://youtu.be/6p3mhkNgRXs
  3. https://en.wikipedia.org/wiki/Rod_Burstall
  4. https://en.wikipedia.org/wiki/Robin_Popplestone
  5. https://www.researchgate.net/profile/Andrew_Orton
  6. See also discussion of the historical context of the Graph Traverser in Russell and Norvig (1995).
  7. https://en.wikipedia.org/wiki/Iamblichus

References

Bailey, Norman T. J. (1967) The simulation of stochastic epidemics in two dimensions. Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Volume 4: Biology and Problems of Health, 237–257, University of California Press, Berkeley, Calif. https://bit.ly/2or7sqp

Castelfranchi, C. (2018) For a Science-oriented AI and not Servant of the Business. Powerpoint file available from the author on request at Research Gate: https://www.researchgate.net/profile/Cristiano_Castelfranchi

Doran, J.E and Michie, D. (1966) Experiments with the Graph Traverser Program. September 1966. Proceedings of The Royal Society A 294(1437):235-259.

Doran, J.E. (1968) Experiments with a pleasure seeking automaton. In Machine Intelligence 3 (ed. D. Michie) Edinburgh University Press, pp 195-216.

Doran, J.E. (1969) Planning and generalization in an automaton-environment system. In Machine Intelligence 4 (eds. B. Meltzer and D. Michie) Edinburgh University Press. pp 433-454.

Doran, J.E and Hodson, F.R (1975) Mathematics and Computers in Archaeology. Edinburgh University Press, 1975 [and Harvard University Press, 1976]

Doran, J.E. (1997) Foreknowledge in Artificial Societies. In: Conte R., Hegselmann R., Terna P. (eds) Simulating Social Phenomena. Lecture Notes in Economics and Mathematical Systems, vol 456. Springer, Berlin, Heidelberg. https://bit.ly/2Pf5Onv

Doran, J.E. (1998) Simulating Collective Misbelief. Journal of Artificial Societies and Social Simulation vol. 1, no. 1, http://jasss.soc.surrey.ac.uk/1/1/3.html

Doran, J.E. (2002) Agents and MAS in STaMs. In Foundations and Applications of Multi-Agent Systems: UKMAS Workshop 1996-2000, Selected Papers (eds. M d’Inverno, M Luck, M Fisher, C Preist), Springer Verlag, LNCS 2403, July 2002, pp. 131-151. https://bit.ly/2wsrHYG

Doran, J.E. (2018a) MoHAT — a new AI heuristic search based method of DISCOVERING and USING tractable and reliable agent-based computational models of human society. Research Gate Project: https://bit.ly/2lST35a

Doran, J.E. (2018b) An Investigation of Gillian’s HOOP: a speculation in computer games, virtual reality and METAPHYSICS. Research Gate Project: https://bit.ly/2C990zn

Gilbert, N. and Doran, J.E. eds. (2018) Simulating Societies: The Computer Simulation of Social Phenomena. Routledge Library Editions: Artificial Intelligence, Vol 6, Routledge: London and New York.

Gilbert, N. and Heath, C. (1985) Social Action and Artificial Intelligence. London: Gower.

Lee, J. and Holtzman, G. (1995) 50 Years after breaking the codes: interviews with two of the Bletchley Park scientists. IEEE Annals of the History of Computing, vol. 17, no. 1, pp. 32-43. https://ieeexplore.ieee.org/document/366512/

Newell, A.; Shaw, J.C.; Simon, H.A. (1959) Report on a general problem-solving program. Proceedings of the International Conference on Information Processing. pp. 256–264.

Russell, S. and Norvig, P. (1995) Artificial Intelligence: A Modern Approach. Prentice-Hall, First edition, pp. 86, 115-117.

Samuel, Arthur L. (1959) “Some Studies in Machine Learning Using the Game of Checkers”. IBM Journal of Research and Development. doi:10.1147/rd.441.0206.


Hales, D. and Doran, J, (2018) Agent-Based Modelling Pioneers: An Interview with Jim Doran, Review of Artificial Societies and Social Simulation, 4th September 2018. https://rofasss.org/2018/09/04/dh/


© The authors under the Creative Commons’ Attribution-NoDerivs (CC BY-ND) Licence (v4.0)