Tag Archives: garypolhill

Outlining some requirements for synthetic populations to initialise agent-based models

By Nick Roxburgh1, Rocco Paolillo2, Tatiana Filatova3, Clémentine Cottineau3, Mario Paolucci2 and Gary Polhill1

1  The James Hutton Institute, Aberdeen AB15 8QH, United Kingdom {nick.roxburgh,gary.polhill}@hutton.ac.uk

2  Institute for Research on Population and Social Policies, Rome, Italy {rocco.paolillo,mario.paolucci}@cnr.it

3 Delft University of Technology, Delft, The Netherlands {c.cottineau,t.filatova}@tudelft.nl

Abstract. We propose a wish list of features that would greatly enhance population synthesis methods from the perspective of agent-based modelling. The challenge of synthesising appropriate populations is heightened in agent-based modelling by the emphasis on complexity, which requires accounting for a wide array of features. These often include, but are not limited to: attributes of agents, their location in space, the ways they make decisions and their behavioural dynamics. In the real-world, these aspects of everyday human life can be deeply interconnected, with these associations being highly consequential in shaping outcomes. Initialising synthetic populations in ways that fail to respect these covariances can therefore compromise model efficacy, potentially leading to biased and inaccurate simulation outcomes.

1 Introduction

With agent-based models (ABMs), the rationale for creating ever more empirically informed, attribute-rich synthetic populations is clear: the closer agents and their collectives mimic their  real-world counterparts, the more accurate the models can be and the wider the range of questions they can be used to address (Zhou et al., 2022). However, while many ABMs would benefit from synthetic populations that more fully capture the complexity and richness of real-world populations – including their demographic and psychological attributes, social networks, spatial realms, decision making, and behavioural dynamics – most efforts are stymied by methodological and data limitations. One reason for this is that population synthesis methods have predominantly been developed with microsimulation applications in mind (see review by Chapuis et al. (2022)), rather than ABM. We therefore argue that there is a need for improved population synthesis methods, attuned to support the specific requirements of the ABM community, as well as commonly encountered data constraints. We propose a wish list of features for population synthesis methods that could significantly enhance the capability and performance of ABMs across a wide range of application domains, and we highlight several promising approaches that could help realise these ambitions. Particular attention is paid to methods that prioritise accounting for covariance of characteristics and attributes.

2 The interrelationships among aspects of daily life

2.1 Demographic and psychological attributes

To effectively replicate real-world dynamics, ABMs must realistically depict demographic and psychological attributes at both individual and collective levels. A critical aspect of this realism is accounting for the covariance of such attributes. For instance, interactions between race and income levels significantly influence spatial segregation patterns in the USA, as demonstrated in studies like Bruch (2014).

Several approaches to population synthesis have been developed over the years, often with a specific focus on assignment of demographic attributes. That said, where psychological attributes are collected in surveys alongside demographic data, they can be incorporated into synthetic populations just like other demographic attributes (e.g., Wu et al. (2022)). Among the most established methods is Iterative Proportional Fitting (IPF). While capable of accounting for covariances, it does have significant limitations. One of these is that it “matches distributions only at one demographic level (i.e., either household or individual)” (Zhou et al., 2022 p.2). Other approaches have sought to overcome this – such as Iterative Proportional Updating, Combinatorial Optimisation, and deep learning methods – but they invariably have their own limitations and downsides, though the extent to which these will matter depends on the application. In their overview of the existing population synthesis landscape, Zhou et al., (2022) suggest that deep learning methods appear particularly promising for high-dimensional cases. Such approaches tend to be data hungry, though – a potentially significant barrier to exploitation given many studies already face challenges with survey availability and sample size.

2.2 Social networks

Integrating realistic social networks into ABMs during population synthesis is crucial for effectively mimicking real-world social interactions, such as those underlying epidemic spread, opinion dynamics, and economic transactions (Amblard et al., 2015). In practice, this means generating networks that link agents by edges that represent particular associations between them. These networks may need to be weighted, directional, or multiplex, and potentially need to account for co-dependencies and correlations between layers. Real-world social networks emerge from distinct processes and tendencies. For example, homophily preferences strongly influence the likelihood of friendship formation, with connections more likely to have developed in cases where agents share attributes like age, gender, socio-economic context, and location (McPherson et al., 2001). Another example is personality which can strongly influence the size and nature of an individual’s social network (Zell et al., 2014). For models where social interactions play an important role, it is therefore critical that consideration be given to the underlying factors and mechanisms that are likely to have influenced the development of social networks historically, if synthetic networks are to have any chance of reasonably depicting real world network structures.

Generating synthetic social networks is challenging due to often limited or unavailable data. Consequently, researchers tend to use simple models like regular lattices, random graphs, small-world networks, scale-free networks, and models based on spatial proximity. These models capture basic elements of real-world social networks but can fall short in complex scenarios. For instance, Jiang et al. (2022) describes a model where agents, already assigned to households and workplaces, form small-world networks based on employment or educational ties. While this approach accounts for spatial and occupational similarities, it overlooks other factors, limiting its applicability for networks like friendships that rely on personal history and intangible attributes.

To address these limitations, more sophisticated methods have been proposed, including Exponential Random Graph Models (ERGM) (Robins et al., 2007) and Yet Another Network Generator (YANG) (Amblard et al., 2015). However, they also come with their own challenges; for example, ERGMs sometimes misrepresent the likelihood of certain network structures, deviating from real-world observations.

2.3 Spatial locations

The places where people live, work, take their leisure and go to school are critically interlinked and interrelated with social networks and demographics. Spatial location also affects options open to people, including transport, access to services, job opportunities and social encounters. ABMs’ capabilities in representing space explicitly and naturally is a key attraction for geographers interested in social simulation and population synthesis (Cottineau et al., 2018). Ignoring the spatial concentration of agents with common traits, or failing to account for the effects that space has on other aspects of everyday human existence, risks overlooking a critical factor that influences a wide range of social dynamics and outcomes.

Spatial microsimulation generates synthetic populations tailored to defined geographic zones, such as census tracts (Lovelace and Dumont, 2017). However, many ABM applications require agents to be assigned to specific dwellings and workplaces, not just aggregated zones. While approaches to dealing with this have been proposed, agreement on best practice is yet to cohere. Certain agent-location assignments can be implemented using straightforward heuristic methods without greatly compromising fidelity, if heuristics align well with real-world practices. For example, children might be allocated to schools simply based on proximity, such as in Jiang et al., (2022). Others use rule-based or stochastic methods to account for observed nuances and random variability, though these often take the form of crude approximations. One of the more well-rounded examples is detailed by Zhou et al. (2022). They start by generating a synthetic population, which they then assign to specific dwellings and jobs using a combination of rule-based matching heuristic and probabilistic models. Dwellings are assigned to households by considering factors like household size, income, and dwelling type jointly. Meanwhile, jobs are assigned to workers using a destination choice model that predicts the probability of selecting locations based on factors such as sector-specific employment opportunities, commuting costs, and interactions between commuting costs and individual worker attributes. In this way, spatial location choices are more closely aligned with the diverse attributes of agents. The challenge with such an approach is to obtain sufficient microdata to inform the rules and probabilities.

2.4 Decision-making and behavioural dynamics

In practice, peoples’ decision-making and behaviours are influenced by an array of factors, including their individual characteristics such as wealth, health, education, gender, and age, their social network, and their geographical circumstances. These factors shape – among other things – the information agents’ are exposed to, the choices open to them, the expectations placed on them, and their personal beliefs and desires (Lobo et al., 2023). Consequently, accurately initialising such factors is important for ensuring that agents are predisposed to make decisions and take actions in ways that reflect how their real world counterparts might behave. Furthermore, the assignment of psychographic attributes to agents necessitates the prior establishment of these foundational characteristics as they are often closely entwined.

Numerous agent decision-making architectures have been proposed (see Wijermans et al. (2023)). Many suggest that a range of agent state attributes could, or even should, be taken into consideration when evaluating information and selecting behaviours. For example, the MoHub Framework (Schlüter et al., 2017) proposes four classes of attributes as potentially influential in the decision-making process: needs/goals, knowledge, assets, and social. In practice, however, the factors taken into consideration in decision-making procedures tend to be much narrower. This is understandable given the higher data demands that richer decision-making procedures entail. However, it is also regrettable given we know that decision-making often draws on many more factors than are currently accounted for, and the ABM community has worked hard to develop the tools needed to depict these richer processes.

3 Practicalities

Our wish list of features for synthetic population algorithms far exceeds their current capabilities. Perhaps the main issue today is data scarcity, especially concerning less tangible aspects of populations, such as psychological attributes and social networks, where systematic data collection is often more limited. Another significant challenge is that existing algorithms struggle to manage the numerous conditional probabilities involved in creating realistic populations, excelling on niche measures of performance but not from a holistic perspective. Moreover, there are accessibility issues with population synthesis tools. The next generation of methods need to be made more accessible to non-specialists through developing easy to use stand-alone tools or plugins for widely used platforms like NetLogo, else they risk not having their potential exploited.

Collectively, these issues may necessitate a fundamental rethink of how synthetic populations are generated. The potential benefits of successfully addressing these challenges are immense. By enhancing the capabilities of synthetic population tools to meet the wish list set out here, we can significantly improve model realism and expand the potential applications of social simulation, as well as strengthen credibility with stakeholders. More than this, though, such advancements would enhance our ability to draw meaningful insights, respecting the complexities of real-world dynamics. Most critically, better representation of the diversity of actors and circumstances reduces the risk of overlooking factors that might adversely impact segments of the population – something there is arguably a moral imperative to strive for.

Acknowledgements

MP & RP were supported by FOSSR (Fostering Open Science in Social Science Research), funded by the European Union – NextGenerationEU under NPRR Grant agreement n. MUR IR0000008. CC was supported by the ERC starting Grant SEGUE (101039455).

References

Amblard, F., Bouadjio-Boulic, A., Gutiérrez, C.S. and Gaudou, B. 2015, December. Which models are used in social simulation to generate social networks? A review of 17 years of publications in JASSS. In 2015 Winter Simulation Conference (WSC) (pp. 4021-4032). IEEE. https://doi.org/10.1109/WSC.2015.7408556

Bruch, E.E., 2014. How population structure shapes neighborhood segregation. American Journal of Sociology119(5), pp.1221-1278. https://doi.org/10.1086/675411

Chapuis, K., Taillandier, P. and Drogoul, A., 2022. Generation of synthetic populations in social simulations: a review of methods and practices. Journal of Artificial Societies and Social Simulation25(2). https://doi.org/10.18564/jasss.4762

Cottineau, C., Perret, J., Reuillon, R., Rey-Coyrehourcq, S. and Vallée, J., 2018, March. An agent-based model to investigate the effects of social segregation around the clock on social disparities in dietary behaviour. In CIST2018-Représenter les territoires/Representing territories (pp. 584-589). https://hal.science/hal-01854398v1

Jiang, N., Crooks, A.T., Kavak, H., Burger, A. and Kennedy, W.G., 2022. A method to create a synthetic population with social networks for geographically-explicit agent-based models. Computational Urban Science2(1), p.7. https://doi.org/10.1007/s43762-022-00034-1

Lobo, I., Dimas, J., Mascarenhas, S., Rato, D. and Prada, R., 2023. When “I” becomes “We”: Modelling dynamic identity on autonomous agents. Journal of Artificial Societies and Social Simulation26(3). https://doi.org/10.18564/jasss.5146

Lovelace, R. and Dumont, M., 2017. Spatial microsimulation with R. Chapman and Hall/CRC. https://spatial-microsim-book.robinlovelace.net

McPherson, M., Smith-Lovin, L. and Cook, J.M., 2001. Birds of a feather: Homophily in social networks. Annual review of sociology27(1), pp.415-444. https://doi.org/10.1146/annurev.soc.27.1.415

Robins, G., Pattison, P., Kalish, Y. and Lusher, D., 2007. An introduction to exponential random graph (p*) models for social networks. Social networks29(2), pp.173-191. https://doi.org/10.1016/j.socnet.2006.08.002

Schlüter, M., Baeza, A., Dressler, G., Frank, K., Groeneveld, J., Jager, W., Janssen, M.A., McAllister, R.R., Müller, B., Orach, K. and Schwarz, N., 2017. A framework for mapping and comparing behavioural theories in models of social-ecological systems. Ecological economics131, pp.21-35. https://doi.org/10.1016/j.ecolecon.2016.08.008

Wijermans, N., Scholz, G., Chappin, É., Heppenstall, A., Filatova, T., Polhill, J.G., Semeniuk, C. and Stöppler, F., 2023. Agent decision-making: The Elephant in the Room-Enabling the justification of decision model fit in social-ecological models. Environmental Modelling & Software170, p.105850. https://doi.org/10.1016/j.envsoft.2023.105850

Wu, G., Heppenstall, A., Meier, P., Purshouse, R. and Lomax, N., 2022. A synthetic population dataset for estimating small area health and socio-economic outcomes in Great Britain. Scientific Data9(1), p.19. https://doi.org/10.1038/s41597-022-01124-9

Zell, D., McGrath, C. and Vance, C.M., 2014. Examining the interaction of extroversion and network structure in the formation of effective informal support networks. Journal of Behavioral and Applied Management15(2), pp.59-81. https://jbam.scholasticahq.com/article/17938.pdf

Zhou, M., Li, J., Basu, R. and Ferreira, J., 2022. Creating spatially-detailed heterogeneous synthetic populations for agent-based microsimulation. Computers, Environment and Urban Systems91, p.101717. https://doi.org/10.1016/j.compenvurbsys.2021.101717


Roxburgh, N., Paolillo, R., Filatova, T., Cottineau, C., Paolucci, M. and Polhill, G. (2025) Outlining some requirements for synthetic populations to initialise agent-based models. Review of Artificial Societies and Social Simulation, 27 Jan 2025. https://rofasss.org/2025/01/29/popsynth


© The authors under the Creative Commons’ Attribution-NoDerivs (CC BY-ND) Licence (v4.0)

Quantum computing in the social sciences

By Emile Chappin and Gary Polhill

The dream

What could quantum computing mean for the computational social sciences? Although quantum computing is at an early stage, this is the right time to dream about precisely that question for two reasons. First, we need to keep the computational social sciences ‘in the conversation’ about use cases for quantum computing to ensure our potential needs are discussed. Second, thinking about how quantum computing could affect the way we work in the computational social sciences could lead to interesting research questions, new insights into social systems and their uncertainties, and form the basis of advances in our area of work.

At first glance, quantum computing and the computational social sciences seem unrelated. Computational social science uses computer programs written in high-level languages to explore the consequences of assumptions as macro-level system patterns based on coded rules for micro-level behaviour (e.g., Gilbert, 2007). Quantum computing is in an early phase, with the state-of-the-art being in the order of 100s of qubits [1],[2], and a wide range of applications are envisioned (Hassija, 2020), e.g., in the areas of physics (Di Meglio et al., 2024) and drug discovery (Blunt et al., 2022). Hence, the programming of quantum computers is also in an early phase. Major companies (e.g., IBM, Microsoft, Alphabet, Intel, Rigetti Computing) are investing heavily and have put out high expectations – though how much of this is hyperbole to attract investors and how much it is backed up by substance remains to be seen. This means it is still hard to comprehend what opportunities may come from scaling up.

Our dream is that quantum computing enables us to represent human decision-making on a much larger scale, do more justice to how decisions come about, and embrace the influences people have on each other. It would respect that people’s actual choices are undetermined until they have to show behaviour. On a philosophical level, these features are consistent with how quantum computation operates. Applying quantum computing to decision-making with interactions may help us inform or discover behavioural theory and contribute to complex systems science.

The mysticism around quantum computing

There is mysticism around what qubits are. To start thinking about how quantum computing could be relevant for computational social science, there is no direct need to understand the physics of how qubits are physically set up. However, it is necessary to understand the logic and how quantum computers operate. At the logical level, there are similarities between quantum and traditional computers.

The main similarity is that the building blocks are bits and that they are either 0 or 1, but only when you measure them. A second similarity is that quantum computers work with ‘instructions’. Quantum ‘processors’ alter the state of the bits in a ‘memory’ using programs that comprise sequences of ‘instructions’ (e.g., Sutor, 2019).

There are also differences. They are: 1) qubits are programmed to have probabilities of being a zero or a one, 2) qubits have no determined value until they are measured, and 3) multiple qubits can be entangled. The latter means the values (when measured) depend on each other.

Operationally speaking, quantum computers are expected to augment conventional computers in a ‘hybrid’ computing environment. This means we can expect to use traditional computer programs to do everything around a quantum program, not least to set up and analyse the outcomes.

Programming quantum computers

Until now, programming languages for quantum computing are low-level; like assembly languages for regular machines. Quantum programs are therefore written very close to ‘the hardware’. Similarly, in the early days of electronic computers, instructions for processors to perform directly were programmed directly: punched cards contained machine language instructions. Over time, computers got bigger, more was asked of them, and their use became more widespread and embedded in everyday life. At a practical level, different processors, which have different instruction sets, and ever-larger programs became more and more unwieldy to write in machine language. Higher-level languages were developed, and reached a point where modellers could use the languages to describe and simulate dynamic systems. Our code is still ultimately translated into these lower-level instructions when we compile software, or it is interpreted at run-time. The instructions now developed for quantum computing are akin to the early days of conventional computing, but development of higher-level programming languages for quantum computers may happen quickly.

At the start, qubits are put in entangled states (e.g., Sutor, 2019); the number of qubits at your disposal makes up the memory. A quantum computer program is a set of instructions that is followed. Each instruction alters the memory, but only by changing the probabilities of qubits being 0 or 1 and their entanglement. Instruction sets are packaged into so-called quantum circuits. The instructions operate on all qubits at the same time, (you can think of this in terms of all probabilities needing to add up to 100%). This means the speed of a quantum program does not depend on the scale of the computation in number of qubits, but only depends on the number of instructions that one executes in a program. Since qubits can be entangled, quantum computing can do calculations that take too long to run on a normal computer.

Quantum instructions are typically the inverse of themselves: if you execute an instruction twice, you’re back at the state before the first operation. This means you can reverse a quantum program simply by executing the program again, but now in reverse order of the instructions. The only exception to this is the so-called ‘read’ instruction, by which the value is determined for each qubit to either be 1 or 0. This is the natural end of the quantum program.

Recent developments in quantum computing and their roadmaps

Several large companies such as Microsoft, IBM and Alphabet are investing heavily in developing quantum computing. The route currently is to move up in the scale of these computers with respect to the number of qubits they have and the number of gates (instructions) that can be run. IBM’s roadmap they suggest growing to 7500 instructions, as quickly as 2025[3]. At the same time, programming languages for quantum computing are being developed, on the basis of the types of instructions above. At the moment, researchers can gain access to actual quantum computers (or run quantum programs on simulated quantum hardware). For example, IBM’s Qiskit[4] is one of the first open-source software developing kit for quantum computing.

A quantum computer doing agent-based modelling

The exponential growth in quantum computing capacity (Coccia et al., 2024) warrants us to consider how it may be used in the computational social sciences. Here is a first sketch. What if there is a behavioural theory that says something about ‘how’ different people decide in a specific context on a specifical behavioural action. Can we translate observed behaviour into the properties of a quantum program and explore the consequences of what we can observe? Or, in contrast, can we unravel the assumptions underneath our observations? Could we look at alternative outcomes that could also have been possible in the same system, under the same conceptualization? Given what we observe, what other system developments could have had emerged that also are possible (and not highly unlikely)? Can we unfold possible pathways without brute-forcing a large experiment? These questions are, we believe, different when approached from a perspective of quantum computing. For one, the reversibility of quantum programs (until measuring) may provide unique opportunities. This also means, doing such analyses may inspire new kinds of social theory, or it may give a reflection on the use of existing theory.

One of the early questions is how we may use qubits to represent modelled elements in social simulations. Here we sketch basic alternative routes, with alternative ideas. For each strain we include a very rudimentary application to both Schelling’s model of segregation and the Traffic Basic model, both present in NetLogo model library.

Qubits as agents

A basic option could be to represent an agent by a qubit. Thinking of one type of stylized behaviour, an action that can be taken, then a quantum bit could represent whether that action is taken or not. Instructions in the quantum program would capture the relations between actions that can be taken by the different agents, interventions that may affect specific agents. For Schelling’s model, this would have to imply to show whether segregation takes place or not. For Traffic Basic, this would be what the probability is for having traffic jams. Scaling up would mean we would be able to represent many interacting agents without the simulation to slow down. This is, by design, abstract and stylized. But it may help to answer whether a dynamic simulation on a quantum computer can be obtained and visualized.

Decision rules coded in a quantum computer

A second option is for an agent to perform a quantum program as part of their decision rules. The decision-making structure should then match with the logic of a quantum computer. This may be a relevant ontological reference to how brains work and some of the theory that exists on cognition and behaviour. Consider a NetLogo model with agents that have a variety of properties that get translated to a quantum program. A key function for agents would be that the agent performs a quantum calculation on the basis of a set of inputs. The program would then capture how different factors interact and whether the agent performs specific actions, i.e., show particular behaviour. For Schelling’s segregation model, it would be the decision either to move (and in what direction) or not. For Traffic Basic it would lead to a unique conceptualization of heterogeneous agents. But for such simple models it would not necessarily take benefit of the scale-advantage that quantum computers have, because most of the computation occurs on traditional computers and the limited scope of the decision logic of these models. Rather, it invites to developing much more rich and very different representations of how decisions are made by humans. Different brain functions may all be captured: memory, awareness, attitudes, considerations, etc. If one agent’s decision-making structure would fit in a quantum computer, experiments can already be set up, running one agent after the other (just as it happens on traditional computers). And if a small, reasonable number of agents would fit, one could imagine group-level developments. If not of humans, this could represent companies that function together, either in a value chain or as competitors in a market. Because of this, it may be revolutionary:  let’s consider this as quantum agent-based modelling.

Using entanglement

Intuitively one could consider the entanglement if qubits to be either represent the connection between different functions in decision making, the dependencies between agents that would typically interact, or the effects of policy interventions on agent decisions. Entanglement of qubits could also represent the interaction of time steps, capturing path dependencies of choices, limiting/determining future options. This is the reverse of memory: what if the simulation captures some form of anticipation by entangling future options in current choices. Simulations of decisions may then be limited, myopic in their ability to forecast. By thinking through such experiments, doing the work, it may inspire new heuristics that represent bounded rationality of human decision making. For Schelling’s model this could be the local entanglement restricting movement, it could be restricting movement because of future anticipated events, which contributes to keep the status quo. For Traffic Basic, one could forecast traffic jams and discover heuristics to avoid them which, in turn may inspire policy interventions.

Quantum programs representing system-level phenomena

The other end of the spectrum can also be conceived. As well as observing other agents, agents could also interact with a system in order to make their observations and decisions where the system with which they interact with itself is a quantum program. The system could be an environmental, or physical system, for example. It would be able to have the stochastic, complex nature that real world systems show. For some systems, problems could possibly be represented in an innovative way. For Schelling’s model, it could be the natural system with resources that agents benefit from if they are in the surroundings; resources having their own dynamics depending on usage. For Traffic Basic, it may represent complexities in the road system that agents can account for while adjusting their speed.

Towards a roadmap for quantum computing in the social sciences

What would be needed to use quantum computation in the social sciences? What can we achieve by taking the power of high-performance computing combined with quantum computers when the latter scale up? Would it be possible to reinvent how we try to predict the behaviour of humans by embracing the domain of uncertainty that also is essential in how we may conceptualise cognition and decision-making? Is quantum agent-based modelling at one point feasible? And how do the potential advantages compare to bringing it into other methods in the social sciences (e.g. choice models)?

A roadmap would include the following activities:

  • Conceptualise human decision-making and interactions in terms of quantum computing. What are promising avenues of the ideas presented here and possibly others?
  • Develop instruction sets/logical building blocks that are ontologically linked to decision-making in the social sciences. Connect to developments for higher-level programming languages for quantum computing.
  • Develop a first example. One could think of reproducing one of the traditional models. Either an agent-based model, such as Schelling’s model of segregation or Basic Traffic, or a cellular automata model, such as game-of-life. The latter may be conceptualized with a relatively small number of cells and could be a valuable demonstration of the possibilities.
  • Develop quantum computing software for agent-based modelling, e.g., as a quantum extension for NetLogo, MESA, or for other agent-based modelling packages.

Let us become inspired to develop a more detailed roadmap for quantum computing for the social sciences. Who wants to join in making this dream a reality?

Notes

[1] https://newsroom.ibm.com/2022-11-09-IBM-Unveils-400-Qubit-Plus-Quantum-Processor-and-Next-Generation-IBM-Quantum-System-Two

[2] https://www.fastcompany.com/90992708/ibm-quantum-system-two

[3] https://www.ibm.com/roadmaps/quantum/

[4] https://github.com/Qiskit/qiskit-ibm-runtime

References

Blunt, Nick S., Joan Camps, Ophelia Crawford, Róbert Izsák, Sebastian Leontica, Arjun Mirani, Alexandra E. Moylett, et al. “Perspective on the Current State-of-the-Art of Quantum Computing for Drug Discovery Applications.” Journal of Chemical Theory and Computation 18, no. 12 (December 13, 2022): 7001–23. https://doi.org/10.1021/acs.jctc.2c00574.

Coccia, M., S. Roshani and M. Mosleh, “Evolution of Quantum Computing: Theoretical and Innovation Management Implications for Emerging Quantum Industry,” in IEEE Transactions on Engineering Management, vol. 71, pp. 2270-2280, 2024, https://doi: 10.1109/TEM.2022.3175633.

Di Meglio, Alberto, Karl Jansen, Ivano Tavernelli, Constantia Alexandrou, Srinivasan Arunachalam, Christian W. Bauer, Kerstin Borras, et al. “Quantum Computing for High-Energy Physics: State of the Art and Challenges.” PRX Quantum 5, no. 3 (August 5, 2024): 037001. https://doi.org/10.1103/PRXQuantum.5.037001.

Gilbert, N., Agent-based models. SAGE Publications Ltd, 2007. ISBN 978-141-29496-44

Hassija, V., Chamola, V., Saxena, V., Chanana, V., Parashari, P., Mumtaz, S. and Guizani, M. (2020), Present landscape of quantum computing. IET Quantum Commun., 1: 42-48. https://doi.org/10.1049/iet-qtc.2020.0027

Sutor, R. S. (2019). Dancing with Qubits: How quantum computing works and how it can change the world. Packt Publishing Ltd.


Chappin, E. & Polhill, G (2024) Quantum computing in the social sciences. Review of Artificial Societies and Social Simulation, 25 Sep 2024. https://rofasss.org/2024/09/24/quant


© The authors under the Creative Commons’ Attribution-NoDerivs (CC BY-ND) Licence (v4.0)

Delusional Generality – how models can give a false impression of their applicability even when they lack any empirical foundation

By Bruce Edmonds1, Dino Carpentras2, Nick Roxburgh3, Edmund Chattoe-Brown4 and Gary Polhill3

  1. Centre for Policy Modelling, Manchester Metropolitan University
  2. Computational Social Science, ETH Zurich
  3. James Hutton Institute, Aberdeen
  4. University of Leicester

“Hamlet: Do you see yonder cloud that’s almost in shape of a camel?
Polonius: By the mass, and ‘tis like a camel, indeed.
Hamlet: Methinks it is like a weasel.
Polonius: It is backed like a weasel.
Hamlet: Or like a whale?
Polonius: Very like a whale.

Models and Generality

The essence of a model is that it represents – if it is not a model of something it is not a model at all (Zeigler 1976, Wartofsky 1979). A random bit of code or set of equations is not a model. The point of a model is that one can use the model to infer or understand some aspects about what it represents. However, models can represent a variety of kinds of things in a variety of ways (Edmonds & al. 2019) – it can represent ideas, correspond to data, or aspects of other models and it can represent each of these in either a vague or precise manner. To completely understand a model – its construction, properties and working – one needs to understand how it does this mapping. This piece focuses attention on this mapping, rather than the internal construction of models.

What a model reliably represents may be a single observed situation, but it might satisfactorily represent more than one such situation. The range of situations that the model satisfactorily represents is called the “scope” of the model (what is “satisfactory” depending on the purpose for which the model is being used). The more extensive the scope, the more “general” we say the model is. A model that only represents one case has no generality at all and may be more in the nature of a description.

There is a hunger for general accounts of social phenomena (let us call these ‘theories’). However, this hunger is often frustrated by the sheer complexity and ‘messiness’ involved in such phenomena. If every situation we observe is essentially different, then no such theory is possible. However, we hope that this is not the case for the social world and, indeed, informal observation suggests that there is, at least some, commonality between situations – in other words, that some kind of reliable generalisation about social phenomena might be achievable, however modest (Merton 1968). This piece looks at two kinds of applicability – analogical applicability and empirical applicability – and critiques those that conflate them. Although the expertise of the authors is in the agent-based modelling of social phenomena, and so we restrict our discussion to this, we strongly suspect that our arguments are true for many kinds of modelling across a range of domains.

In the next sections we contrast two uses for models: as analogies (ways of thinking about observed systems) and those that intend to represent empirical data in a more precise way. There are, of course, other uses of model such as that of exploring theory which have nothing to do with anything observed.

Models used as analogies

Analogical applicability comes from the flexibility of the human mind in interpreting accounts in terms of the different situations. When we encounter a new situation, the account is mapped onto it – the account being used as an analogy for understanding this situation. Such accounts are typically in the form of a narrative, but a model can also be used as an analogy (which is the case we are concerned with here). The flexibility with which this mapping can be constructed means that such an account can be related to a wide range of phenomena. Such analogical mapping can lead to an impression that the account has a wide range of applicability. Analogies are a powerful tool for thinking since it may give us some insights into otherwise novel situations. There are arguments that analogical thinking is a fundamental aspect of human thought (Hofstadter 1995) and language (Lakoff 2008). We can construct and use analogical mappings so effortlessly that they seem natural to us. The key thing about analogical thinking is that the mapping from the analogy to the situation to which it is applied is re-invented each time – there is no fixed relationship between the analogy and what it might be applied to. We are so good at doing this that we may not be aware of how different the constructed mapping is each time. However, its flexibility comes at a cost, namely that because there is no well-defined relationship with what it applies to, the mapping tends to be more intuitive than precise. An analogy can give insights but analogical reasoning suggests rather than establishes anything reliably and you cannot empirically test it (since analogical mappings can be adjusted to avoid falsification). Such “ways of thinking” might be helpful, but equally might be misleading [note ‎1].

Just because the content of an analogy might be expressed formally does not change any of this (Edmonds 2018), in fact formally expressed analogies might give the impression of being applicable, but often are only related to anything observed via ideas – the model relates to some ideas, and the ideas relate to reality (Edmonds 2000). Using models as analogies is a valid use of models but this is not an empirically reliable one (Edmonds et al. 2019). Arnold (2013) makes a powerful argument that many of the more abstract simulation models are of this variety and simply not relatable to empirically observed cases and data at all – although these give the illusion of wide applicability, that applicability is not empirical. In physics the ways of thinking about atomic or subatomic entities have changed over time whilst the mathematically-expressed, empirically-relevant models have not (Hartman 1997). Although Thompson (2022) concentrates on mathematically formulated models, she also distinguishes between well-validated empirical models and those that just encapsulate the expertise/opinion of the modeller. She gives some detailed examples of where the latter kind had disproportionate influence, beyond that of other expertise, just because it was in the form of a model (e.g. the economic impact of climate change).

An example of an analogical model is described in Axelrod (1984) – a formalised tournament where algorithmically-expressed strategies are pitted against each other, playing the iterated prisoner’s dilemma game. It is shown how the ‘tit for tat’ strategy can survive against many other mixes of strategies (static or evolving).  In the book, the purpose of the model is to suggest a new way of thinking about the evolution of cooperation. The book claims the idea ‘explains’ many observed phenomena, but this in an analogical manner – no precise relationship with any observed measurements is described. There is no validation of the model here or in the more academic paper that described these results (Axelrod & Hamilton 1981).

Of course, researchers do not usually call their models “analogies” or “analogical” explicitly but tend to use other phrasings that imply a greater importance. An exception is Epstein (2008) where it is explicitly listed as one of the 15 modelling purposes, other than prediction, that he discusses. Here he says such models are “…more than beautiful testaments to the unifying power of models: they are headlights in dark unexplored territory.” (ibid.) thus suggesting their use in thinking about phenomena where we do not already have reliable empirical models. Anything that helps us think about such phenomena could be useful, but that does not mean they are at all reliable. As Herbert Simon said: “Metaphor and analogy can be helpful, or they can be misleading. ” (Simon 1968, p. 467).

Another purpose listed in Epstein (2008) is to “Illuminate core dynamics”. After raising the old chestnut that “All models are wrong”, he goes on to justify them on the grounds that “…they capture qualitative behaviors of overarching interest”. This is fine if the models are, in fact, known to be useful as more than vague analogies [Note 2] – that they do, in some sense, approximate observed phenomena – but this is not the case with novel models that have not been empirically tested. This phrase is more insidious, because it implies that the dynamics that have been illuminated by the model are “core” – some kind of approximation of what is important about the phenomena, allowing for future elaborations to refine the representation. This implies a process where an initially rough idea is iteratively improved. However, this is premature because we do not know if what has been abstracted away in the abstract model was essential to the dynamics of the target phenomena or not without empirical testing – this is just assumed or asserted based on the intuitions of the modeller.

This idea of the “core dynamics” leads to some paradoxical situations – where a set of competing models are all deemed to be core. Indeed, the literature has shown how the same phenomenon can be modelled in many contrasting ways. For instance, political polarisation has been modelled through models with mechanisms for repulsion, bounded confidence, reinforcement, or even just random fluctuations, to name a few (Flache et al., 2017; Banisch & Olbrich 2019; Carpentras et al. 2022). However, it is likely that only a few of them contribute substantially to the political polarisation we observe in the real world, and so that all the others are not a real “core dynamic” but until we have more empirical work we do not know which are core and which not.

A related problem with analogical models is that, even when relying on parsimony principles [Note 3], it is not possible to decide which model is better. This aspect, combined with the constant production of new models, can makes the relevant literature increasingly difficult to navigate as models proliferate without any empirical selection, especially for researchers new to ABM. Furthermore, most analogical models define their object of study in an imprecise manner so that it is hard to evaluate whether they are even intended to capture element of any particular observed situation. For example, opinion dynamics models rarely define the type of interaction they represent (e.g. in person vs online) or even what an opinion is. This has led to cases where even knowledge of facts has been studied as “opinions” (e.g. Chacoma & Zanette, 2015).

In summary, analogical models can be a useful tool to start thinking about complex phenomena. However, the danger with them is that they give an impression of progress but result in more confusion than clarity, possibly slowing down scientific progress. Once one has some possible insights, one needs to confront these with empirical data to determine which are worth further investigation.

Models that relate directly to empirical data

An empirical model, in contrast, has a well-defined way of mapping to the phenomena it represents. For example, the variables of the gas laws (volume, temperature and pressure) are measured using standard methods developed over a long period of time, one does not invent a new way of doing this each time the laws are applied. In this case, the ways of measuring these properties have developed alongside the mathematical models of the laws so that these work reliably under broad (and well known) conditions and cannot be adjusted at the whim of a modeller. Empirical generality comes from when a model applies reliably to many different situations – in the case of the gas laws, to a wide range of materials in gaseous form to a high degree of accuracy.

Empirical models can be used for different purposes, including: prediction, explanation and description (Edmonds et al. 2019). Each of these uses how the model is mapped to empirical data in different ways, to reflect these purposes. With a descriptive model the mapping is one-way from empirical data to the model to justify the different parts. In a predictive model, the initial model setup is determined from known data and the model is then run to get its results. These results are then mapped back to what we might expect as a prediction, which can be later compared to empirically measured values to check the model’s validity. An explanatory model supports a complex explanation of some known outcomes in terms of a set of processes, structures and parameter values. When it is shown that the outcomes of such a model sufficiently match those from the observed data – the model represents a complex chain of causation that would result in that data in terms of the processes, structures and parameter values it comprised. It thus supports an explanation in terms of the model and its input of what was observed. In each of these three cases the mapping from empirical data to the model happens in a different order and maybe in a different direction, however they all depend upon the mapping being well defined.

Cartwright (1983), studying how physics works, distinguished between explanatory and phenomenological laws – the former explains but does not necessary relate exactly to empirical data (such as when we fit a line to data using regression), whilst the latter fits the data but does not necessarily explain (like the gas laws). Thus the jobs of theoretical explanation and empirical prediction are done by different models or theories (often calling the explanatory version “theory” and the empirical versions “models”). However, in physics the relationship between the two is, itself, examined so that the “bridging laws” between them are well understood, especially in formal terms. In this case, we attribute reliable empirical meaning to the explanatory theories to the extent that the connection to the data is precise, even though it is done via the intermediary of an “phenomenological” model because both mappings (explanatory↔phenomenological and phenomenological↔empirical data) are precise and well established. The point is that the total mapping from model or theory to empirical data is not subject to interpretation or post-hoc adjustment to improve its fit.

ABMs are often quite complicated and require many parameters or other initialising input to be specified before they can be run. If some of these are not empirically determinable (even in principle) then these might be guessed at using a process of “calibration”, that is searching the space of possible initialisations for some values for which some measured outcomes of the results match other empirical data. If the model has been separately shown to be empirically reliable then one could do such a calibration to suggest what these input values might have been. Such a process might establish that the model captures a possible explanation of the fitted outcomes (in terms of the model plus those backward-inferred input values), but this is not a very strong relationship, since many models are very flexible and so could fit a wide range of possible outcomes. The reliability of such a suggested explanation, supported by the model, is only relative to (a) the empirical reliability of any theory or other assumptions the model is built upon (b) how flexibly the model outcomes can be adjusted to fit the target data and (c) how precisely the choice of outcome measures and fit are. Thus, calibration does not provide strong evidence of the empirical adequacy of an ABM and any explanation supported by such a procedure is only relative to the ‘wiggle room’ afforded by free parameters and unknown input data as well as any assumptions used in the making of the model. However, empirical calibration is better than none and may empirically fix the context in which theoretical exploration occurs – showing that the model is, at least, potentially applicable to the case being considered [Note 4].

An example of a model that is strongly grounded in empirical data is the “538” model of the US electoral college for presidential elections (Silver 2012). This is not an ABM but more like a micro-simulation. It aggregates the uncertainty from polling data to make probabilistic predictions about what this means for the outcomes. The structure of the model comes directly from the rules of the electoral college, the inputs are directly derived from the polling data and it makes predictions about the results that can be independently checked. It does a very specific, but useful job, in translating the uncertainty of the polling data into the uncertainty about the outcome.

Why this matters

If people did not confuse the analogical and empirical cases, there would not be a problem. However, researchers seem to suffer from a variety of “Kuhnian Spectacles” (Kuhn 1962) – namely that because they view their target systems through an analogical model, they tend to think that this is how that system actually is – i.e. that the model has not just analogical but also empirical applicability. This is understandable, we use many layers of analogy to navigate our world and in many every-day cases it is practical to conflate our models with the reality we deal with (when they are very reliable). However, people who claim to be scientists are under an obligation to be more cautious and precise than this, since others might wish to rely upon our theories and models (this is, after all, why they support us in our privileged position). However, such caution is not always followed. There are cases where modellers declare their enterprise a success even after a long period without any empirical backing, making a variety of excuses instead of coming clean about this lack (Arnold 2015).

Another fundamental aspect is that agent-based models can be very interdisciplinary and, because of that, they can be used also by researchers in different fields. However, many fields do not consider models as simple analogies, especially when they provide precise mathematical relationship among variables. This can easily result in confusions where the analogical applicability of ABMs is interpreted as empirical in another field.

Of course, we may be hopeful that, sometime in the future, our vague or abstract analogical model maybe developed into something with proven empirical abilities, but we should not suggest such empirical abilities until these have been established. Furthermore, we should be particularly careful to ensure that non-modellers understand that this possibility is only a hope and not imply anything otherwise (e.g. imply that it is likely to have empirical validity). However, we suspect that in many cases this confusion goes beyond optimistic anticipation and that some modellers conflate analogical with empirical applicability, assuming that their model is basically right just because it seems that way to them. This is what we call “delusional generality” – that a researcher is under the impression that their model has a wide applicability (or potentially wide applicability) due to the attractiveness of the analogy it presents. In other words, unaware of the unconscious process of re-inventing the mapping to each target system, they imagine (without further justification) that it has some reliable empirical (or potentially empirical) generality at its core [Note 5].

Such confusion can have severe real-world consequences if a model with only analogical validity is assumed to also have some empirical reliability. Thompson (2022) discusses how abstract economic models of the cost of future climate change did affect the debate about the need for prevention and mitigation, even though they had no empirical validity. However, agent-based modellers have also made the same mistake, with a slew of completely unvalidated models about COVID affecting public debate about policy (Squazzoni et al 2021).

Conclusion

All of the above discussion raises the question of how we might achieve reliable models with even a moderate level of empirical generality in the social sciences. This is a tricky question of scientific strategy, which we are not going to answer here [Note 6]. However, we question whether the approach of making “heroic” jumps from phenomena to abstract non-empirical models on the sole basis of its plausibility to its authors will be a productive route when the target is complex phenomena, such as socio-cognitive systems (Dignum, Edmonds and Carpentras 2022). Certainly, that route has not yet been empirically demonstrated.

Whatever the best strategy is, there is a lot of theoretical modelling in the field of social simulation that assumes or implies that it is the precursor for empirical applicability and not a lot of critique about the extent of empirical success achieved. The assumption seems to be that abstract theory is the way to make progress understanding social phenomena but, as we argue here, this is largely wishful thinking – the hope that such models will turn out to have empirical generality being a delusion.  Furthermore, this approach has substantive deleterious effects in terms of encouraging an explosion of analogical models without any process of selection (Edmonds 2010). It seems that the ‘famine’ of theory about social phenomena with any significant level of generality is so severe, that many seem to give credence to models they might otherwise reject – constructing their understanding using models built on sand.

Notes

1. There is some debate about the extent to which analogical reasoning works, what kind of insights it results in and under what circumstances (Hofstede 1995). However, all we need for our purposes is that: (a) it does not reliably produce knowledge, (b) the human mind is exceptionally good at ‘fitting’ analogies to new situations (adjusting the mapping to make it ‘work’ somehow) and (c) due to this ability analogies can be far more convincing that the analogical reasoning warrants.

2. In pattern-oriented modelling (Grimm & al 2005) models are related to empirical evidence in a qualitative (pattern-based) manner, for example to some properties of a distribution of numeric outcomes. In this kind of modelling, a precise numerical correspondence is replaced by a set of qualitative correspondences in many different dimensions. In this the empirical relevance of a model is established on the basis that it is too hard to simultaneously fit a model to evidence in this way, thus ruling that out as a source of its correspondence with that evidence.

3. So-called “parsimony principles” are a very unreliable manner of evaluating competing theories on grounds other than convenience or that of using limited data to justify the values of parameters (Edmonds 2007).

4. In many models a vague argument for its plausibility is often all that is described to show that it is applicable to the cases being discussed. At least calibration demonstrates its empirical applicability, rather than simply assuming it.

5. We are applying the principle of charity here, assuming that such conflations are innocent and not deliberate. However, there is increasing pressure from funding agencies to demonstrate ‘real life relevance’ so some of these apparent confusions might be more like ‘spin’ – trying to give an impression of empirical relevance even when this is merely an aspiration, in order to suggest that their model has more significant than they have reliably established.

6. This has been discussed elsewhere, e.g. (Moss & Edmonds 2005).

Acknowledgements

Thanks to all those we have discussed these issues with, including Scott Moss (who was talking about these kinds of issue more than 30 years ago), Eckhart Arnold (who made many useful comments and whose careful examination of the lack of empirical success of some families of model demonstrates our mostly abstract arguments), Sven Banisch and other members of the ESSA special interest group on “Strongly Empirical Modelling”.

References

Arnold, E. (2013). Simulation models of the evolution of cooperation as proofs of logical possibilities. How useful are they? Ethics & Politics, XV(2), pp. 101-138. https://philpapers.org/archive/ARNSMO.pdf

Arnold, E. (2015) How Models Fail – A Critical Look at the History of Computer Simulations of the Evolution of Cooperation. In Misselhorn, C. (Ed.): Collective Agency and Cooperation in Natural and Artificial Systems. Explanation, Implementation and Simulation, Philosophical Studies Series, Springer, pp. 261-279. https://eckhartarnold.de/papers/2015_How_Models_Fail

Axelrod, R. (1984) The Evolution of Cooperation, Basic Books.

Axelrod, R.  & Hamilton, W.D. (1981) The evolution of cooperation. Science, 211, 1390-1396. https://www.science.org/doi/abs/10.1126/science.7466396

Banisch, S., & Olbrich, E. (2019). Opinion polarization by learning from social feedback. The Journal of Mathematical Sociology, 43(2), 76-103. https://doi.org/10.1080/0022250X.2018.1517761

Carpentras, D., Maher, P. J., O’Reilly, C., & Quayle, M. (2022). Deriving An Opinion Dynamics Model From Experimental Data. Journal of Artificial Societies & Social Simulation, 25(4).http://doi.org/10.18564/jasss.4947

Cartwright, N. (1983) How the Laws of Physics Lie. Oxford University Press.

Chacoma, A. & Zanette, D. H. (2015). Opinion formation by social influence: From experiments to modelling. PloS ONE, 10(10), e0140406.https://doi.org/10.1371/journal.pone.0140406

Dignum, F., Edmonds, B. and Carpentras, D. (2022) Socio-Cognitive Systems – A Position Statement. Review of Artificial Societies and Social Simulation, 2nd Apr 2022. https://rofasss.org/2022/04/02/scs

Edmonds, B. (2000). The Use of Models – making MABS actually work. In. S. Moss and P. Davidsson. Multi Agent Based Simulation. Berlin, Springer-Verlag. 1979: 15-32. http://doi.org/10.1007/3-540-44561-7_2

Edmonds, B. (2007) Simplicity is Not Truth-Indicative. In Gershenson, C.et al. (eds.) Philosophy and Complexity. World Scientific, pp. 65-80.

Edmonds, B. (2010) Bootstrapping Knowledge About Social Phenomena Using Simulation Models. Journal of Artificial Societies and Social Simulation, 13(1), 8. http://doi.org/10.18564/jasss.1523

Edmonds, B. (2018) The “formalist fallacy”. Review of Artificial Societies and Social Simulation, 11th June 2018. https://rofasss.org/2018/07/20/be/

Edmonds, B., le Page, C., Bithell, M., Chattoe-Brown, E., Grimm, V., Meyer, R., Montañola-Sales, C., Ormerod, P., Root H. & Squazzoni. F. (2019) Different Modelling Purposes. Journal of Artificial Societies and Social Simulation, 22(3):6. http://doi.org/10.18564/jasss.3993

Epstein, J. M. (2008). Why Model?. Journal of Artificial Societies and Social Simulation, 11(4),12. https://www.jasss.org/11/4/12.html

Flache, A., Mäs, M., Feliciani, T., Chattoe-Brown, E., Deffuant, G., Huet, S. & Lorenz, J. (2017). Models of social influence: Towards the next frontiers. Journal of Artificial Societies and Social Simulation, 20(4), 2. http://doi.org/10.18564/jasss.4298

Grimm, V., Revilla, E., Berger, U., Jeltsch, F., Mooij, W.M., Railsback, S.F., et al. (2005). Pattern-oriented modeling of agent-based complex systems: lessons from ecology. Science, 310 (5750), 987–991. https://www.jstor.org/stable/3842807

Hartman, S. (1997) Modelling and the Aims of Science. 20th International Wittgenstein Symposium, Kirchberg am Weshsel.

Hofstadter, D. (1995) Fluid Concepts and Creative Analogies. Basic Books.

Kuhn, T. S. (1962). The structure of scientific revolutions. University of Chicago Press.

Lakoff, G. (2008). Women, fire, and dangerous things: What categories reveal about the mind. University of Chicago Press.

Merton, R.K. (1968). On the Sociological Theories of the Middle Range. In Classical Sociological Theory, Calhoun, C., Gerteis, J., Moody, J., Pfaff, S. and Virk, I. (Eds), Blackwell, pp. 449–459.

Meyer, R. & Edmonds, B. (2023). The Importance of Dynamic Networks Within a Model of Politics. In: Squazzoni, F. (eds) Advances in Social Simulation. ESSA 2022. Springer Proceedings in Complexity. Springer. (Earlier, open access, version at: https://cfpm.org/discussionpapers/292)

Moss, S. and Edmonds, B. (2005). Towards Good Social Science. Journal of Artificial Societies and Social Simulation, 8(4), 13. https://www.jasss.org/8/4/13.html

Squazzoni, F. et al. (2020) ‘Computational Models That Matter During a Global Pandemic Outbreak: A Call to Action’ Journal of Artificial Societies and Social Simulation 23(2):10. http://doi.org/10.18564/jasss.4298

Silver, N, (2012) The Signal and the Noise: Why So Many Predictions Fail – But Some Don’t. Penguin.

Simon, H. A. (1962). The architecture of complexity. Proceedings of the American philosophical society, 106(6), 467-482.https://www.jstor.org/stable/985254

Thompson, E. (2022). Escape from Model Land: How mathematical models can lead us astray and what we can do about it. Basic Books.

Wartofsky, M. W. (1979). The model muddle: Proposals for an immodest realism. In Models (pp. 1-11). Springer, Dordrecht.

Zeigler, B. P. (1976). Theory of Modeling and Simulation. Wiley Interscience, New York.


Edmonds, B., Carpentras, D., Roxburgh, N., Chattoe-Brown, E. and Polhill, G. (2024) Delusional Generality – how models can give a false impression of their applicability even when they lack any empirical foundation. Review of Artificial Societies and Social Simulation, 7 May 2024. https://rofasss.org/2024/05/06/delusional-generality


© The authors under the Creative Commons’ Attribution-NoDerivs (CC BY-ND) Licence (v4.0)

Exascale computing and ‘next generation’ agent-based modelling

By Gary Polhill, Alison Heppenstall, Michael Batty, Doug Salt, Ricardo Colasanti, Richard Milton and Matt Hare

Introduction

In the past decade we have seen considerable gains in the amount of data and computational power that are available to us as scientific researchers.  Whilst the proliferation of new forms of data can present as many challenges as opportunities (linking data sets, checking veracity etc.), we can now begin to construct models that are capable of answering ever more complex and interrelated questions.  For example, what happens to individual health and the local economy if we pedestrianize a city centre?  What is the impact of increasing travel costs on the price of housing? How can we divert economic investment to places in economic decline from prosperous cities and regions. These advances are slowly positioning agent-based modelling to support decision-makers to make informed evidence-based decisions.  However, there is still a lack of ABMs being used outside of academia and policy makers find it difficult to mobilise and apply such tools to inform real world problems: here we explore the background in computing that helps address the question why such models are so underutilised in practice.

Whilst reaching a level of maturity (defined as being an accepted tool) within the social sciences, agent-based modelling still has several methodological barriers to cross.  These were first highlighted by Crooks et al. (2008) and revisited by Heppenstall et al. (2020) and include robust validation, elicitation of behaviour from data and scaling up.  Whilst other disciplines, such as meteorology, are able to conduct large numbers of simulations (ensemble modelling) using high-performance computing, there is a relative absence of this capability within agent-based modelling. Moreover, many different kinds of agent-based models are being devised, and key issues concern the number and type of agents and these are reflected in the whole computational context in which such models are developed. Clearly there is potential for agent-based modelling to establish itself as a robust policy tool, but this requires access to large-scale computing.

Exascale high-performance computing is defined with respect to speed of calculation with orders of magnitude defined as 10^18 (a billion-billion) floating point operations per second (flops). That is fast enough to calculate the ratios of the ages of each of every possible pair of people in China in roughly a second. By comparison, modern-day personal computers are around 10^9 flops (gigascale) – a billion times slower. The same rather pointless calculation of age ratios of the Chinese would take just over thirty years on a standard laptop at the time of writing (2023). Though agent-based modellers are more interested in instructions incorporating the rules operated by each agent executed per second than in floating-point operations, the speed of the two is approximately the same.

Anecdotally, the majority of simulations of agent-based models are on personal computers operating on the desktop. However, there are examples of the use of high-performance computing environments such as computing clusters (terascale) and cloud services such as Microsoft’s Azure, Amazon’s AWS or Google Cloud (tera- to peta-scale). High-performance computing provides the capacity to do more of what we already do (more runs for calibration, validation and sensitivity analysis) and/or at a larger scale (regional or sub-national scale rather than local scale) with the number of agents scaled accordingly. As a rough guide, however, since terascale computing is a million times slower than exascale computing, an experiment that currently takes a few days or weeks in a high-performance computing environment could be completed in a fraction of a second at exascale.

We are all familiar with poor user interface design in everyday computing, and in particular the frustration of waiting for the hourglasses, spinning wheels and progress bars to finish so that we can get on with our work. In fact, the ‘Doherty Threshold’ (Yablonski 2020) stipulates 400ms interaction time between human action and computer response for best productivity. If going from 10^9 to 10^18 flops is simply a case of multiplying the speed of computation by a billion, the Doherty threshold is potentially feasible with exascale computing when applied to simulation experiments that now require very long wait times for completion.

The scale of performance of exascale computers means that there is scope to go beyond doing-more-of-what-we-already-do to thinking more deeply about what we could achieve with agent-based modelling. Could we move past some of these methodological barriers that are characteristic of agent-based modelling? What could we achieve if we had appropriate software support, and how this would affect the processes and practices by which agent-based models are built? Could we move agent-based models to having the same level of ‘robustness’ as climate models, for example? We can conceive of a productivity loop in which an empirical agent-based model is used for sequential experimentation with continual adaptation and change, continued experiment with perhaps a new model emerging from these workflows to explore tangential issues. But currently we need to have tools that help us build empirical agent-based models much more rapidly, and critically, to find, access and preprocess empirical data that the model will use for initialisation, then finding and affirming parameter values.

The ExAMPLER project

The ExAMPLER (Exascale Agent-based Modelling for PoLicy Evaluation in Real-time) project is an eighteen-month project funded by the Engineering and Physical Sciences Research Council to explore the software, data and institutional requirements to support agent-based modelling at exascale.

With high-performance computing use not being commonplace in the agent-based modelling community, we are interested in finding out what the state-of-the-art is in high-performance computing use by agent-based modellers, undertaking a systematic literature review to assess the community’s ‘exascale-readiness’. This is not just a question of whether the community has the necessary technical skills to use the equipment. It is also a matter that covers whether the hardware is appropriate to the computational demands that agent-based modellers have, whether the software in which agent-based models are built can take advantage of the hardware, and whether the institutional processes by which agent-based modellers access high-performance computing – especially with respect to information requested of applicants – is aware of their needs.

We will then benchmark the state-of-the-art against high-performance computing use in other domains of research: ecology and microsimulation, which are comparable to agent-based social simulation (ABSS); and fields such as transportation, land use and urban econometric  modelling that are  not directly comparable to ABSS, but have similar computational challenges (e.g. having to simulate many interactions, needing to explore a vast uncharted parameter space, containing multiple qualitatively different outcomes from the same initial conditions, and so on). Ecology might not simulate agents with decision-making algorithms as computationally demanding as some of those used by agent-based modellers of social systems, while a crude characterisation of microsimulation work is that it does not simulate interactions among heterogeneous agents, which affects the parallelisation of simulating them. Land use and transport models usually rely on aggregates of agents but increasingly there are being disaggregated to finer and fine spatial units with these units themselves being treated more like agents. The ‘discipline-to-be-decided’ might have a community with generally higher technical computing skills than would be expected among social scientists. Benchmarking would allow us to gain better insights into the specific barriers faced by social scientists in accessing high-performance computing.

Two other strands of work in ExAMPLER feature significant engagement with the agent-based modelling community. The project’s imaginary starting point is a computer powerful enough to experiment with an agent-based model which run in fractions of a second. With a pre-existing agent-based model, we could use such a computer in a one-day workshop to enable a creative discussion with decision-makers about how to handle problems and policies associated with an emerging crisis. But what if we had the tools at our disposal to gather and preprocess data and build models such that these activities could also be achievable in the same day? or even the same hour? Some of our land use and transportation models are already moving in this direction (Horni, Nagel, and Axhausen, 2016). Agent-based modelling would thus become a social activity that facilitates discussion and decision-making that is mindful of complexity and cascading consequences. The practices and procedures associated with building an agent-based model would then have evolved significantly from what they are now, as have the institutions built around accessing and using high-performance computing.

The first strand of work co-constructs with the agent-based modelling community various scenarios by which agent-based modelling is transformed by the dramatic improvements in computational power that exascale computing entails. These visions will be co-constructed primarily through workshops, the first of which is being held at the Social Simulation Conference in Glasgow – a conference that is well-attended by the European (and wider international) agent-based social simulation community. However, we will also issue a questionnaire to elicit views from the wider community of those who cannot attend one of our events. There are two purposes to these exercises: to understand the requirements of the community and their visions for the future, but also to advertise the benefits that exascale computing could have.

In a second series of workshops, we will develop a roadmap for exascale agent-based modelling that identifies the institutional, scientific and infrastructure support needed to achieve the envisioned exascale agent-based modelling use-cases. In essence, what do we need to have in place to make exascale a reality for the everyday agent-based modeller? This activity is underpinned by training ExAMPLER’s research team in the hardware, software and algorithms that can be used to achieve exascale computation more widely. That knowledge, together with the review of the state-of-the-art in high-performance computing use with agent-based models, can be used to identify early opportunities for the community to make significant gains (Macal, and North, 2008)

Discussion

Exascale agent-based modelling is not simply a case of providing agent-based modellers with usernames and passwords on an exascale computer and letting them run their models on it. There are many institutional, scientific and infrastructural barriers that need to be addressed.

On the scientific side, exascale agent-based modelling could be potentially revolutionary in transforming the practices, methods and audiences for agent-based modelling. As a highly diverse community, methodological development is challenged both by the lack of opportunity to make it happen, and by the sheer range of agent-based modelling applications. Too much standardization and ritualized behaviour associated with ‘disciplining’ agent-based modelling risks some of the creative benefits of having the cross-disciplinary discussions that agent-based modelling enables us to have. Nevertheless, it is increasingly clear that off-the-shelf methods for designing, implementing and assessing models are ill-suited to agent-based modelling, or – especially in the case of the last of these – fail to do it justice (Polhill and Salt 2017, Polhill et al. 2019). Scientific advancement in agent-based modelling is predicated on having the tools at our disposal to tell the whole story of its benefits, and enabling non-agent-based modelling colleagues to understand how to work with the ABM community.

Hence, hardware is only a small part of the story of the infrastructure supporting exascale agent-based modelling. Exascale computers are built using GPUs (Graphical Processing Units) – which, bluntly-speaking, are specialized computing engines for performing matrix calculations and ‘drawing millions of triangles as quickly as possible’ – they are, in any case, different from CPU-based computing. In Table 4 of Kravari and Bassiliades’ (2015) survey of agent-based modelling platforms, only two of the 24 platforms reviewed (Cormas – Bommel et al. 2016 and GAMA – Taillandier et al. 2019) are not listed as involving Java and/or the Java Virtual Machine. (As it turns out, GAMA does use Java.) TornadoVM (Papadimitriou et al. 2019) is one tool allowing Java Virtual Machines to run on GPUs. Even if we can then run NetLogo on a GPU, specialist GPU-based agent-based modelling platforms such as Richmond et al.’s (2010, 2022) FLAME GPU may be preferable in order to make best use of the highly parallelized computing environment on GPUs.

Such software simply achieves getting an agent-based model running on an exascale computer. Realizing some of the visions of future exascale-enabled agent-based modelling means rather more in the way of software support. For example, the one-day workshop in which an agent-based modelling is co-constructed with stakeholders asks either a great deal of the developers in terms of building a bespoke application in tens of minutes, or many stakeholders trusting pre-constructed modular components that can be brought together rapidly using a specialist software tool.

As has been noted (e.g. Alessa et al. 2006, para 3.4), agent-based modelling is already challenging for social scientists without programming expertise, and GPU programming is a highly specialized domain in the world of software environments. Exascale computing intersects GPU programming with high-performance computing; issues with the ways in which high-performance computing clusters are typically administered make access to them a significant obstacle for agent-based modellers (Polhill 2022). There are therefore institutional barriers that need to be broken down for the benefits of exascale agent-based modelling to be realized in a community primarily interested in the dynamics of social and/or ecological complexity, and rather less in the technology that enables them to pursue that interest. ExAMPLER aims to provide us with a voice that gets our requirements heard so that we are not excluded from taking best advantage of advanced development in computing hardware.

Acknowledgements

The ExAMPLER project is funded by the EPSRC under grant number EP/Y008839/1.  Further information is available at: https://exascale.hutton.ac.uk

References

Alessa, L. N., Laituri, M. and Barton, M. (2006) An “all hands” call to the social science community: Establishing a community framework for complexity modeling using cyberinfrastructure. Journal of Artificial Societies and Social Simulation 9 (4), 6. https://www.jasss.org/9/4/6.html

Bommel, P., Becu, N., Le Page, C. and Bousquet, F. (2016) Cormas: An agent-based simulation platform for coupling human decisions with computerized dynamics. In Kaneda, T., Kanegae, H., Toyoda, Y. and Rizzi, P. (eds.) Simulation and Gaming in the Network Society. Translational Systems Sciences 9, pp. 387-410. doi:10.1007/978-981-10-0575-6_27

Crooks, A. T., C. J. E. Castle, and M. Batty. (2008). “Key Challenges in Agent-Based Modelling for Geo-spatial Simulation.” Computers, Environment and Urban Systems  32(6),  417– 30.

Heppenstall A, Crooks A, Malleson N, Manley E, Ge J, Batty M. (2020). Future Developments in Geographical Agent-Based Models: Challenges and Opportunities. Geographical Analysis. 53(1): 76 – 91 doi:10.1111/gean.12267

Horni, A, Nagel, K and Axhausen, K W. (eds)(2016) The Multi-Agent Transport Simulation MATSim, Ubiquity Press, London, 447–450

Kravari, K. and Bassiliades, N. (2015) A survey of agent platforms. Journal of Artificial Societies and Social Simulation 18 (1), 11. https://www.jasss.org/18/1/11.html

Macal, C. M., and North, M. J. (2008) Agent-Based Modeling And Simulation for EXASCALE Computing, http://www.scidac.org

Papadimitriou, M., Fumero, J., Stratikopoulos, A. and Kotselidis, C. (2019) Towards prototyping and acceleration of Java programs onto Intel FPGAs. Proceedings of the 2019 IEEE 27th Annueal International Symposium on Field-Programmable Custom Computing Machines (FCCM). doi:10.1109/FCCM.2019.00051

Polhill, G. (2022) Antisocial simulation: using shared high-performance computing clusters to run agent-based models. Review of Artificial Societies and Social Simulation, 14 Dec 2022. https://rofasss.org/2022/12/14/antisoc-sim

Polhill, G. and Salt, D. (2017) The importance of ontological structure: why validation by ‘fit-to-data’ is insufficient. In Edmonds, B. and Meyer, R. (eds.) Simulating Social Complexity (2nd edition), pp. 141-172. doi:10.1007/978-3-319-66948-9_8

Polhill, J. G., Ge, J., Hare, M. P., Matthews, K. B., Gimona, A., Salt, D. and Yeluripati, J. (2019) Crossing the chasm: a ‘tube-map’ for agent-based simulation of policy scenarios in spatially-distributed systems. Geoinformatica 23, 169-199. doi:10.1007/s10707-018-00340-z

Richmond, P., Chisholm, R., Heywood, P., Leach, M. and Kabiri Chimeh, M. (2022) FLAME GPU (2.0.0-rc). Zenodo. doi:10.5281/zenodo.5428984

Richmond, P., Walker, D., Coakley, S. and Romano, D. (2010) High performance cellular level agent-based simulation with FLAME for the GPU. Briefings in Bioinformatics 11 (3), 334-347. doi:10.1093/bib/bbp073

Taillandier, P., Gaudou, B., Grignard, A.,Huynh, Q.-N., Marilleau, N., P. Caillou, P., Philippon, D. and Drogoul, A. (2019). Building, composing and experimenting complex spatial models with the GAMA platform. Geoinformatica 23 (2), 299-322, doi:10.1007/s10707-018-00339-6

Yablonski, J. (2020) Laws of UX. O’Reilly. https://www.oreilly.com/library/view/laws-of-ux/9781492055303/


Polhill, G., Heppenstall, A., Batty, M., Salt, D., Colasanti, R., Milton, R. and Hare, M. (2023) Exascale computing and ‘next generation’ agent-based modelling. Review of Artificial Societies and Social Simulation, 9 Mar 2023. https://rofasss.org/2023/09/29/exascale-computing-and-next-gen-ABM


© The authors under the Creative Commons’ Attribution-NoDerivs (CC BY-ND) Licence (v4.0)

Policy modelling requires a multi-scale, multi-criteria and diverse-framing approach

Lessons from a session at SocSimFest 2023

By Gary Polhill and Juliette Rouchier

Bruce Edmonds organized a stimulating session at the SocSimFest held 15-16 March 2023. Entitled, “How to do wrong using Social Simulation – as a result of arrogance, laziness or ill intent.” One of the presentations (Rouchier 2023) covered the modelling used to justify lockdowns in various countries. This talk concentrated on the harms lockdowns caused and suggested that they were unnecessary; a discourse that is not the most present in the media and takes an alternative view to the idea that a scientific consensus exists in real-time and could lead to the best decision. There was some ‘vigorous’ debate afterwards, but here we expand on an important point that came out of that debate: Modelling the effects of Covid to inform policy on managing the disease requires much more than epidemiological modelling. We might speculate, then, whether in general, modelling for policy intervention means ensuring greater coverage of the wider system than might be deemed strictly necessary for the immediate policy question in hand. Though such speculation has apparent consequences for model complicatedness that go beyond Sun et al.’s (2016) ‘Medawar zone’ for empirical ABM, there is an interpretation of this requirement for extended coverage that is also compatible with preferences for simpler models.

Going beyond the immediate case of Covid would require the identification of commonalities in the processes of decision making that could be extrapolated to other situations. We are less interested in that here than making the case that simulation for policy analysis in the context of Covid entails greater coverage of the system than might be expected given the immediate questions in hand. The expertise of Rouchier means our focus is primarily on the experience of Covid in France. Generalisation of the principle to wider coverage beyond this case is a matter of conjecture that we propose making.

Handling Covid: an evaluation that is still in progress

Whether governments were right or wrong to implement lockdowns of varying severity is a matter that will be for historians to debate. During that time various researchers developed models, including agent-based models, that were used to advise policymakers on handling an emergency situation predicated on higher rates of mortality and hospitalisation.[1] Assessing the effectiveness of the lockdowns empirically would require us to be able to collect data from parallel universes in which they were not implemented. The fact that we cannot do this leaves us, as Rouchier pointed out, either comparing outcomes with models’ predictions – which is problematic if the models are not trusted – or comparing outcomes across countries with different lockdown policies – which has so far been inconclusive even if it weren’t problematic because of differences in culture and geography from one nation to another. Such comparison will nevertheless be the most fruitful in time, although the differences of implementation among countries will doubtless induce long discussions about the most important factors to consider for defining relevant Non-Pharmaceutical Interventions (NPI).[2]

The effects of the lockdowns themselves on people’s mental and physical health, child development, and on the economy and working practices, are also the subject of emerging data post-lockdown. Some of these consequences have been severe – not least for the individuals concerned. Though not germane to the central argument of this brief document, it is worth noting that the same issue with unobservable parallel universes means that scientific rather than historical assessment of whether these outcomes are better or worse than any outcomes for those individuals and society at large in the absence of lockdowns is also impossible.

For our purposes, the most significant aspect of this second point is that the discussion has arisen after the epidemic emergency: First, it is noteworthy that these matters could perfectly well have been considered in models during the crisis. Indeed, contrasting the positive effect (saving lives or saving a public service) with negative effects (children’s withdrawal from education,[3] increasing psychological distress, not to mention domestic abuse – Usta et al. 2021) is typically what cost-benefit analysis, based on multi-criteria modelling, is supposed to elicit (Roy, 1996). In modelling for public policy decision-making, it is particularly clear that there is no universally ‘superior’ or ‘optimum’ indicator to be used for comparing options; but several indicators to evaluate diverse alternative policies. A discussion about the best decision for a population has to be based on the best description of possible policies and their evaluations according to the chosen indicators (Pluchinotta et al., 2022). This means that a hierarchy of values has to be made explicit to justify the hierarchy of most important indicators. During the Covid crisis one question that could have been asked (should it not have been) is: who is the most vulnerable population to protect? Is it old people because of disease or young people because of potential threats to their future chances in life?

Second, it is clear that this answer could vary in time with information and the dynamics of variant of Covid. For example, as soon as Omicron was announced by South Africa’s doctors, it was said to be less dangerous than earlier variants.[4] In that sense, the discussion of balancing priorities, in a dynamic way, in this historical period is very typical of what could also be central in other public discussions where the whole population is facing a highly uncertain future, and where the evolution of knowledge is rapid. But it is difficult to know in advance which indicators should be considered since some signals can be very weak at some point in time, but then be confirmed as highly relevant later on – essentially this is the problem of the omitted-variable bias.

The discussion about risks to mental health was vivid in 2020 already: some psychologists were soon showing the risk for people with mental health issues or women with violent husbands;[5] while the discussion about effects on children started early in 2020 (Singh et al., 2020). However this issue only started to be considered publicly by the French government a year and a half later. One interpretation of the time differential is that the signal seemed too weak for non-specialists early on, when the specialists had already seen the disturbing signs.

In science, we have no definitive rule to decide when a weak signal at present will later turn out to be truly significant. Rather, it is ‘society’ as a whole that decides on the value of different indicators (sometimes only with the wisdom of hindsight) and scientists should provide knowledge on these. This goes back to classical questions of hierarchy of values about the diverse stakes people hold in questions that recur perennially in decision science.

Modelling for policy making: tension between complexity and elegance?

Edmonds (2022) presented a paper at SSC 2022 outlining four ‘levels’ of rigour needed when conducting social simulation exercises, reserving the highest level for using agent-based models to inform public policy. Page limitations for conference submissions meant he was unable to articulate in the paper as full a list of the stipulations for rigour in the fourth level as he was for the other three. However, Rouchier’s talk at the SocSimFest brought into sharp focus that at least one of those stipulations is that models of public policy should always have broader coverage of the system than is strictly necessary for the immediate question in hand. This has the strange-seeming consequence that exclusively epidemiological models are inadequate to the task of modelling how a contagious illness should be controlled. For any control measure that is proposed, such a stipulation entails that the model be capable of exploring not only the effect on disease spread, but also potential wider effects of relevance to societal matters generally in the domain of other government departments: such as, energy, the environment, business, justice, transportation, welfare, agriculture, immigration, and international relations.

The conjecture that for any modelling challenge in complex or wicked systems, thorough policy analysis entails broader system coverage than the immediate problem in hand (KIDS-like – see Edmonds & Moss 2005), is controversial for those who like simple, elegant, uncomplicated models (KISS-like). Worse than that, while Sun et al. (2016), for example, acknowledge that the Medawar zone for empirical models is at a higher level of complicatedness than for theoretical models, the coverage implied by this conjecture is broader still. The level of complicatedness implied will also be controversial for those who don’t mind complex, complicated models with large numbers of parameters. It suggests that we might need to model ‘everything’, or that policy models are then too complicated for us to understand, and as a consequence, perhaps using simulations to analyse policy scenarios is inappropriate. The following considers each of these objections in turn with a view to developing a more nuanced analysis of the implications of such a conjecture.

Modelling ‘everything’ is a matter that is the easiest to reject as a necessary implication of modelling ‘more things’. Modelling, say, the international relations implications of proposed national policy on managing a global pandemic, does not mean one is modelling the lifecycle of extremophile bacteria, or ocean-atmosphere interactions arising from climate change, or the influence of in-home displays on domestic energy consumption, to choose a few random examples of a myriad things that are not modelled. It is not even clear what modelling ‘everything’ really means – phenomena in social and environmental systems can be modelled at diverse levels of detail, at scales from molecular to global. Fundamentally, it is not even clear that we have anything like a perception of ‘everything’, and hence no basis for representing ‘everything’ in a model. Further, the Borges argument[6] holds in that having a model that would be the same as reality makes it useless to study as it is then wiser to study reality directly. Neither universal agreement nor objective criteria[7] exist for the ‘correct’ level of complexity and complication at which to model phenomena, but failing to engage with a broader perspective on the systemic effects of phenomena leaves one open to the kind of excoriating criticism exemplified by Keen’s (2021) attack on economists’ analysis of climate change.

At the other end of the scale, doing no modelling at all is also a mistake. As Polhill and Edmonds (2023) argue, leaving simulation models out of policy analysis essentially makes the implicit assumption that human cognition is adequate to the task of deciding on appropriate courses of action facing a complex situation. There is no reason (besides hubris) to believe that this is necessarily the case, and plenty of evidence that it is not. Not least of such evidence is that many of the difficult decisions we now face around such things as managing climate change and biodiversity have been forced upon us by poor decision-making in the past.

Cognitive constraints and multiple modellers

This necessity to consider many dimensions of social life within models that are ‘close enough’ to the reality to convince decision-makers induces a risk of ‘over’-complexity. Its main default is the building of models that are too complicated for us to understand. This is a valid concern in the sense that building an artificial system that, though simpler than the real world, is still beyond human comprehension, hardly seems a worthwhile activity. The other concern is that of the knowledge needed by the modeller: how can one person be able to imagine an integrative model which includes (for example) employment, transportation, food, schools, international economy, and any other issue which is needed for a serious analysis of the consequences of policy decisions?

Options that still entail broader coverage but not a single overcomplicated integrated model are: 1/ step-by-step increase in the complexity of the model in a community of practitioners; 2/ confrontation of different simple models with different hypotheses and questions; 3/ superposition and integration of simple models into one, through a serious work on the convergence of ontologies (with a nod to Voinov and Shugart’s (2013) warnings).

  1. To illustrate this first approach, let us stay with the case of the epidemic model. One can start with an epidemiological simulation where we fit to the fact that if we tell people to stay at home then we will cut hospitalizations by enough that health services will not be overwhelmed. But then we are worried that this might have a negative impact on the economy. So we bring in modelling components that simulate all four combinations of person/business-to-person/business transactions, and this shows that if we pay businesses to keep employees on their books, we have a chance of rebooting the economy after the pandemic is over.[8] But then we are concerned that businesses might lie about who their employees are, that office-workers who can continue to work at home are privileged over those with other kinds of job, that those with a child-caring role in their households are disadvantaged in their ability to work at home if the schools are closed, and that the mental health of those who live alone is disproportionately impacted through cutting off their only means of social intercourse. And so more modelling components are brought in. In a social context, this incremental addition of the components of a complicated model may mean it is more comprehensible to the team of modellers.

    If the policy maker really wants to increase her capacity to understand her possible actions with models, she would also have to make sure to invite several researchers for each modelled aspect, as no single social science is free of controversy, and the discussions about consequences should rely on contradictory theories. If a complex model has to be built, it can indeed propose different hypotheses on behaviours, functioning of economy, sanitary risks depending on the type of encounter.[9] It is then more of a modelling ‘framework’ with several options for running various different specific models with different implementation options. One advantage of modelling that applies even in cases where Borges argument applies, is that testing out different hypotheses is harmless for humans (unlike empirical experiments) and can produce possible futures, seen as trajectories that can then be evaluated in real time with relevant indicators. With a serious group of modellers and statisticians, providing contradicting views, not only can the model be useful for developing prospective views, but also the evaluation of hypotheses could be done rapidly.

  2. The CoVprehension Collective (2020) showed another approach, more fluid in its organisation. The idea is “one question, one model”, and the constraint is to have a pedagogic result where a simple phenomenon would be illustrated. Different modellers could realise one or several models on simple issues, so that to explain one simple phenomenon, paradox or show a tautological affirmation. In the process, the CoVprehension team would create moving sub-teams, associate on one specific issue and propose their hypotheses and results in a very simple manner. Such a protocol was purely oriented for explanation to the public, but the idea would be to organise a similar dynamic for policy makers. The system is cheap (it was self-organised with researchers and engineers, with zero funding but their salary) and it sustained lively discussions, with different points of view. Questions could go from differences between possible NPI, with an algorithmic description of these NPI that could make the understanding of processes more precise, to an explanation of the reason why French supermarkets were missing toilet paper. Twenty questions were answered in two months, thus indicating that such a working dynamic is feasible in real-time and provides useful and interesting inputs to discussion.

  3. To avoid too complicated a model, the fusion of both approaches could also be conceived: the addition of dimensions to a large central model could be first tested through simple models, the main process of explanation could be found and this process reproduced within the theoretical framework of the large model. This would constitute both a production of diversity of points of view and models and the aggregation of all points of view in one large model. The fact that the model should be large is important, as ‘size matters’ in diffusion models (e.g. Gotts & Polhill 2010), and thus simple, small models would benefit from this work as well.

As some modellers like complex models (and can think with the help of these models) and others rely on simple stories to increase their understanding of the world, only the creation of an open community of diverse specialists and modellers, KISS as well as KIDS, such a collective step-by-step elaboration could resolve the central problem that ‘too complicated to understand’ is a relative, rather than absolute, assessment. One very important prerequisite of such collaboration is that there is genuine ‘horizontality’ of the community: where each participant is listened to seriously whatever their background, which can be an issue in interdisciplinary work, especially involving people of mixed career stage. Be that as it may, the central conjecture remains: agent-based modelling for policy analysis should be expected to involve even more complicated (assemblages of) models than empirical agent-based modelling.

Endnotes

[1] This point is the one that is the most disputed ex-post in France, where lockdowns were justified (as in other countries) to “protect hospitals”. In France, the idea was not to avoid deaths of older people (90% of deaths were people older than 60, this demographic being 20% of the population), but to avoid hospitals being overwhelmed with Covid cases taking the place of others. In France, the official data regarding hospital activity states that Covid cases represented 2% of hospitalizations and 5% of Intensive Care Unit (ICU) utilizations. Further, hospitals halved their workload from March to May 2020 because of almost all surgery being blocked to keep ICUs free. (In October-December 2020, although the epidemic was more significant at that time, the same decision was not taken). Arguably, 2% of 50% not an increase that should destroy a functioning system – https://www.atih.sante.fr/sites/default/files/public/content/4144/aah_2020_analyse_covid.pdf – page 2. Fixing dysfunction in the UK’s National Health Services has been a long-standing, and somewhat tedious, political and academic debate in the country for years, even before Covid (e.g. Smith 2007; Mannion & Braithwaite 2012; Pope & Burnes 2013; Edwards & Palmer 2019).

[2] An interesting difference that French people heard about was that in the UK, people could wander on the beaches during lockdowns, whereas in France it was forbidden to go to any natural area – indeed, it was forbidden to go further than one kilometre from home. Whereas, in fact, in the UK the lockdown restrictions were a ‘devolved matter’, with slightly different policies in each of the UK’s four member nations, though very similar legislation. In England, Section 6 paragraph (1) of The Health Protection (Coronavirus, Restrictions) (England) Regulations 2020 stated that “no person may leave the place where they are living without reasonable excuse”, with paragraph (2) covering examples of “reasonable excuses” including for exercise, obtaining basic necessities, and accessing public services. Similar wording was used by other devolved nations. None of the regulations stipulated any maximum distance from a person’s residence that these activities had to take place – interpretation of the UK’s law is based on the behaviour of the ‘reasonable person’ (the so-called ‘man on the Clapham omnibus’ – see Łazowski 2021). However, differing interpretations of what ‘resonable people’ would do between the citizenry and the constabulary led to fixed penalty notices being issued for taking exercise more than five miles (eight kilometres) from home – e.g. https://www.theguardian.com/uk-news/2021/jan/09/covid-derbyshire-police-to-review-lockdown-fines-after-walkers-given-200-penalties In Scotland, though the Statutory Instrument makes no mention of any distance, people were ‘given guidance’ not to travel more than five miles from home for leisure and recreation, and were still advised to stay “within their local area” after this restriction was lifted (see https://www.gov.scot/news/travel-restrictions-lifted/).

[3] A problem which seems to be true in various countries https://www.unesco.org/en/articles/new-academic-year-begins-unesco-warns-only-one-third-students-will-return-school
https://www.kff.org/other/report/kff-cnn-mental-health-in-america-survey/
https://eu.usatoday.com/in-depth/news/health/2023/05/15/school-avoidance-becomes-crisis-after-covid/11127563002/#:~:text=School%20avoidant%20behavior%2C%20also%20called,since%20the%20COVID%2D19%20pandemic
https://www.bbc.com/news/health-65954131

[4] https://www.cityam.com/omicron-mild-compared-to-delta-south-african-doctors-say/

[5] https://www.terrafemina.com/article/coronavirus-un-psy-alerte-sur-les-risques-du-confinement-pour-la-sante-mentale_a353002/1

[6] In 1946, in El hacedor, Borges described a country where the art of building maps is so excessive in the need for details that the whole country is covered by the ideal map. This leads to obvious troubles and the disappearance of geographic science in this country.

[7] See Brewer et al. (2016) if the Akaike Information Criterion is leaping to your mind at this assertion.

[8]  Although this assumption might not be stated that way anymore, as the hypothesis that many parts of the economy would hugely suffer started to reveal its truth even before the end of the crisis: a problem that had only been anticipated by a few prominent economists (e.g. Boyer, 2020). This failure shows mainly that the description that most economists make of the economy is too simplistic – as often reproached – to be able to anticipate massive disruptions. Everywhere in the world the informal sector was almost completely stopped as people could neither work in their job nor meet for information market exchange, which causes misery for a huge part of the earth population, among the most vulnerable (ILO, 2022).

[9] A real issue that became obvious is that the nosocomial infections are (still) extremely important in hospitals, as the evaluation of the number of infections in hospitals for Covid19 are estimated to be 20 to 40% during the first epidemic (Abbas et al. 2021).

Acknowledgements

GP’s work is supported by the Scottish Government Rural and Environment Science and Analytical Services Division (project reference JHI-C5-1).

References

Abbas, M., Nunes, T. R., Martischang, R., Zingg, W., Iten, A., Pittet, D. & Harbarth, S. (2021) Nosocomial transmission and outbreaks of coronavirus disease 2019: the need to protect both patients and healthcare workers. Antimicrobial Resistance & Infection Control 10, 7. doi:10.1186/s13756-020-00875-7

Boyer, R. (2020) Les capitalismes à l’épreuve de la pandémie, La découverte, Paris.

Brewer, M., Butler, A. & Cooksley, S. L. (2016) The relative performance of AIC, AICC and BIC in the presence of unobserved heterogeneity. Methods in Ecology and Evolution 7 (6), 679-692. doi:10.1111/2041-210X.12541

the CoVprehension Collective (2020) Understanding the current COVID-19 epidemic: one question, one model. Review of Artificial Societies and Social Simulation, 30th April 2020. https://rofasss.org/2020/04/30/covprehension/

Edmonds, B. (2022) Rigour for agent-based modellers. Presentation to the Social Simulation Conference 2022, Milan, Italy. https://cfpm.org/rigour/

Edmonds, B. & Moss, S. (2005) From KISS to KIDS – an ‘anti-simplistic’ modelling approach. Lecture Notes in Artificial Intelligence 3415, pp. 130-144. doi:10.1007/978-3-540-32243-6_11

Edwards, N. & Palmer, B. (2019) A preliminary workforce plan for the NHS. British Medical Journal 365 (8203), I4144. doi:10.1136/bmj.l4144

Gotts, N. M. & Polhill, J. G. (2010) Size matters: large-scale replications of experiments with FEARLUS. Advances in Complex Systems 13 (04), 453-467. doi:10.1142/S0219525910002670

ILO Brief (2020) Impact of lockdown measures on the informal economy, https://www.ilo.org/global/topics/employment-promotion/informal-economy/publications/WCMS_743523/lang–en/index.htm

Keen, S. (2021) The appallingly bad neoclassical economics of climate change. Globalizations 18 (7), 1149-1177. doi:10.1080/14747731.2020.1807856

Łazowski, A. (2021) Legal adventures of the man on the Clapham omnibus. In Urbanik, J. & Bodnar, A. (eds.) Περιμένοντας τους Bαρβάρους. Law in a Time of Constitutional Crisis: Studies Offered to Mirosław Wyrzykowski. C. H. Beck, Munich, Germany, pp. 415-426. doi:10.5771/9783748931232-415

Mannion, R. & Braithwaite, J. (2012) Unintended consequences of performance measurement in healthcare: 20 salutary lessons from the English National Health Service. Internal Medicine Journal 42 (5), 569-574. doi:10.1111/j.1445-5994.2012.02766.x

Pluchinotta I., Daniell K.A., Tsoukiàs A. (2002), “Supporting Decision Making within the Policy Cycle: Techniques and Tools”, In M. Howlett (ed.), Handbook of Policy Tools, Routledge, London, 235 – 244. https://doi.org/10.4324/9781003163954-24.

Polhill, J. G. & Edmonds, B. (2023) Cognition and hypocognition: Discursive and simulation-supported decision-making within complex systems. Futures 148, 103121. doi:10.1016/j.futures.2023.103121

Pope, R. & Burnes, B. (2013) A model of organisational dysfunction in the NHS. Journal of Health Organization and Management 27 (6), 676-697. doi:10.1108/JHOM-10-2012-0207

Rouchier, J. (2023) Presentation to SocSimFest 23 during session ‘How to do wrong using Social Simulaion – as a result of arrogance, laziness or ill intent’. https://cfpm.org/slides/JR-Epi+newTINA.pdf

Roy, B. (1996) Multicriteria methodology for decision analysis, Kluwer Academic Publishers.

Singh, S, Roy, D., Sinha, K., Parveen, S., Sharma G. & Joshic, G. (2020) Impact of COVID-19 and lockdown on mental health of children and adolescents: A narrative review with recommendations, Psychiatry Research. 2020 Nov; 293: 113429, 10.1016/j.psychres.2020.113429

Smith, I. (2007). Breaking the dysfunctional dynamics. In: Building a World-Class NHS. Palgrave Macmillan, London, pp. 132-177. doi:10.1057/9780230589704_5

Sun, Z., Lorscheid, I., Millington, J. D., Lauf, S., Magliocca, N. R., Groeneveld, J., Balbi, S., Nolzen, H., Müller, B., Schulze, J. & Buchmann, C. M. (2016) Simple or complicated agent-based models? A complicated issue. Environmental Modelling & Software 86, 56-67. doi:10.1016/j.envsoft.2016.09.006

Usta, J., Murr, H. & El-Jarrah, R. (2021) COVID-19 lockdown and the increased violence against women: understanding domestic violence during a pandemic. Violence and Gender 8 (3), 133-139. doi:10.1089/vio.2020.0069

Voinov, A. & Shugart, H. H. (2013) ‘Integronsters’, integral and integrated modeling. Environmental Modelling & Software 39, 149-158. doi:10.1016/j.envsoft.2012.05.014


Polhill, G. and Rouchier, J. (2023) Policy modelling requires a multi-scale, multi-criteria and diverse-framing approach. Review of Artificial Societies and Social Simulation, 31 Jul 2023. https://rofasss.org/2023/07/31/policy-modelling-necessitates-multi-scale-multi-criteria-and-a-diversity-of-framing


© The authors under the Creative Commons’ Attribution-NoDerivs (CC BY-ND) Licence (v4.0)

Antisocial simulation: using shared high-performance computing clusters to run agent-based models

By Gary Polhill

Information and Computational Sciences Department, The James Hutton Institute, Aberdeen AB15 8QH, UK.

High-performance computing (HPC) clusters are increasingly being used for agent-based modelling (ABM) studies. There are reasons why HPC provides a significant benefit for ABM work, and to expect a growth in HPC/ABM applications:

  1. ABMs typically feature stochasticity, which require multiple runs using the same parameter settings and initial conditions to ascertain the scope of the behaviour of the model. The ODD protocol has stipulated the explicit specification of this since it was first conceived (Grimm et al. 2006). Some regard stochasticity as ‘inelegant’ and to be avoided in models, but asynchrony in agents’ actions can avoid artefacts (results being a ‘special case’ rather than a ‘typical case’) and introduces an extra level of complexity affecting the predictability of the system even when all data are known (Polhill et al. 2021).
  2. ABMs often have high-dimensional parameter spaces, which need to be sampled for sensitivity analyses and, in the case of empirical ABMs, for calibration and validation. The so-called ‘curse of dimensionality’ means that the problem of exploring parameter space grows exponentially with the number of parameters. While ABMs’ parameters may not all be ‘orthogonal’ (i.e. each point in parameter space does not uniquely specify model behaviour – a situation sometimes referred to as ‘equifinality’), diminishing the ‘curse’, the exponential growth means the challenge of parameter search does not need many dimensions before it becomes intractable exhaustively.
  3. Both the above points are exacerbated in empirical applications of ABMs given Sun et al.’s (2016) observations about the ‘medawar zone’ of model complicatedness in relation to that of theoretical models. In empirical applications, we also may be more interested in knowing that an undesirable outcome cannot occur, or has a very low probability of occurring, requiring more runs with the same conditions. Further, the additional complicatedness of empirical ABM will entail more parameters, and the empirical application will place greater emphasis on searching parameter space for calibrating and validating to data.

HPC clusters are shared computing resources, and it is now commonplace for research organizations and universities to have them. There can be few academic disciplines without some sort of scientific computing requirement – typical applications include particle physics, astronomy, meteorology, materials, chemistry, neuroscience, medicine and genetics. And social science. As a shared resource, an HPC cluster is subject to norms and institutions frequently observed in common-pool resource dilemmas. Users of HPC clusters are asked to request allocations of computing time, memory and long-term storage space to accommodate their needs. The requests are made in advance of the runs being executed; sometimes so far in advance that the calculations form part of the research project proposal. Hence, as a user, if you do not know, or cannot calculate, the resources you will require, you have a dilemma: ask for more than it turns out you really need and risk normative sanctions; or ask for less than it turns out you really need and impair the scientific quality of your research. Normative sanctions are in the job description of the HPC cluster administrator. This can lead to emails such as those in Figure 1.

Can I once again remind everyone to please be sensible (and considerate) in your allocation of memory for jobs on the cluster. We now have a situation on the cluster where jobs are unable to run because large amounts of memory have been requested yet only a tiny amount is actually active - check the attached image, where light green shows allocated and dark green shows used. Over allocating resources can block the cluster for others, as well as waste a huge amount of energy as additional machines need to power up unnecessarily. Picture 1b

Figure 1: Example email and accompanying visualization from an HPC cluster administrator reminding users that it is antisocial to request more resources than you will use when submitting jobs.

The ‘managerialist’ turn in academia has been lamented in various articles. Kolsaker (2008), while presenting a nuanced view of the relationship between managerialist and academic modes of working, says that “managerialism represents a distinctive discourse based upon a set of values that justify the assumed right of one group to monitor and control the activities of others.” Steinþórsdóttir et al. (2019) note in the abstract to their article that their results from a case study in Iceland support arguments that managerialism discriminates against women and early-career researchers, in part because of a systemic bias towards natural sciences. Both observations are relevant in this context.

Measurement and control as the tools of managerialist conduct renders Goodhart’s Law (the principle that when a metric becomes a target, the metric is useless) relevant. Goodhart’s Law has been found to have led to bibliometrics now being useless for comparing researchers’ performance – both within and between departments (Fire and Guestrin 2019). We may therefore expect that if an HPC cluster’s administrator has the accurate prediction of computing resource as a target for their own performance assessment, or if they give it as a target for users – e.g. by prioritizing jobs submitted by users on the basis of the accuracy of their predicted resource use, or denying access to those consistently over-estimating requirements – this accuracy will be useless. To give a concrete example, programming languages such as C give the programmer direct control over memory allocation. Hence, were access to an HPC conditional on the accurate prediction of memory allocation requirements, a savvy C programmer would have the (excessive) memory allowance in the batch job submission as a command-line argument to their program, which on execution would immediately request that allocation from the server’s operating system. The rest of the program would use bespoke memory allocation functions that allocated the memory the program actually needed from the memory initially reserved. Similar principles can be used for CPU cycles – if the program runs too quickly, then calculate digits of π until the predicted CPU time has elapsed; and disk space – if too much disk space has been requested, then pad files with random data. These activities waste the programmer’s time, and entail additional use of computing resources with energy cost implications for the cluster administrator.

With respect to the normative statements such as those in Figure 1, Griesemer (2020, p. 77), discussing the use of metrics leading to ‘gaming the system’ in academia generally (the savvy C programmer’s behaviour being an example in the context of HPC usage) claims that “it is … problematic to moralize and shame [such] practices as if it were clear what constitutes ethical … practice in social worlds where Goodhart’s law operates” [emphasis mine]. In computer science, however, there are theoretical (in the mathematical sense of the term) reasons why such norms are problematic over-and-above the social context of measurement-and-control.

The theory of computer science is founded in mathematics and logic, and the work of notable thinkers such as Gödel, Turing, Hilbert, Kolmogorov, Chomsky, Shannon, Tarski, Russell and von Neumann. The growth in areas of computer science (e.g. artificial intelligence, internet-of-things) means that undergraduate degrees have increasingly less space to devote to teaching this theory. Blumenthal (2021, p. 46), comparing computer science curricula in 2014 and 2021, found that the proportion of courses with required modules on computational theory had dropped from 46% to 40%, though the sample size meant this result was not significant (P = 0.09 under a two-population z-test). Similarly, the time dedicated to algorithmics and complexity in CS2013 fell to 28 (of which 19 are ‘tier-1’ – required of every curriculum; and 9 are ‘tier-2’ – in which 80% topic coverage is the stipulated minimum) from 31 in CS2008 (Joint Task Force on Computing Curricula 2013).

One of the most critical theoretical results in computer science is the so-called Halting Problem (Turing 1937), which proves that it is impossible to write a computer program that (in the general case) takes as input another computer program and its input data and gives as output whether the latter program will halt or run forever. The halting problem is ‘tier-1’ in CS2013, and so should be taught to every computer scientist. Rice (1953) generalized Turing’s finding to prove that any ‘non-trivial’ properties of computer programs could not be decided algorithmically. These results mean that the automated job scheduling and resource allocation algorithms in HPC, such as SLURM (Yoo et al. 2003), cannot take a user’s submitted job as input and calculate the computing resources it will need. Any requirement for such prediction is thus pushed to the user. In the general case, this means users of HPC clusters are being asked to solve formally undecidable problems when submitting jobs. Qualified computer scientists should know this – but possibly not all cluster administrators, and certainly not all cluster users, are qualified computer scientists. The power dynamic implied by Kolsaker’s (2008) characterization of a managerialist working culture puts users as a disadvantage, while Steinþórsdóttir et al.’s (2019) observations suggest this practice may be indirectly discriminatory on the basis of age and gender; the latter particularly when social scientists are seeking access to shared HPC facilities.

I emphasized ‘in the general case’ above because in many specific cases, computing resources can be accurately estimated. Sorting a list of strings in alphabetical order, for example is known to grow in execution time with as a function of n log n, where n is the length of the list. Integers can even be sorted in linear time, but with demands on memory that are exponential in the number of bits used to store an integer (Andersson et al. 1998).

However, agent-based modellers should not expect to be so lucky. There are various features that ABMs may implement that make their computing resources difficult (perhaps impossible) to predict:

  • Birth and death of agents can render computing time and memory requirements difficult to predict. Indeed, the size of the population and any fluctuation in it may be the purpose of the simulation study. With each agent having memory needed to store its attributes, and execution time for its behaviour, if the maximum population size of a specific run is not predictable from its initial conditions and parameter settings without first running the model, then computing resources cannot be predicted for HPC job submission.
    • A more dramatic corollary of birth and death is the question of extinction – i.e. where all agents die before they can reproduce. At this point, a run would typically terminate – far sooner than the computing time budgeted.
  • Interactions among agents, where the set of other agents with which one agent interacts is not predetermined, will also typically result in unpredictable computing times, even if the time needed for any one interaction is known. In some cases, agents’ social networks may be formally represented using data structures (‘links’ in NetLogo), and if these connections can be created or destroyed as a result of the model’s dynamics, then the memory requirements will typically be unpredictable.
  • Memories of agents, where implemented, are most trivially stored in lists that may have arbitrary length. The algorithms implementing the agents’ behaviours that use their memories will have computing times that are a function of the list length at any one time. These lists may not have a predictable length (e.g. if the agent ‘forgets’ some memories) and hence their behavioural algorithms won’t have predictable execution time.
  • Gotts and Polhill (2010) have shown that running a specific model with larger spaces led to qualitatively different results than with smaller spaces. This suggests that smaller (personal) computers (such as desktops and laptops) cannot necessarily be used to accurately estimate execution times and memory requirements prior to submitting larger-scale simulations requiring resources only available on HPC clusters.

Worse, a job will typically comprise several runs in a ‘batch’ covering multiple parameter settings and/or initial conditions. Even if the maximum time and memory requirements of any of the runs in a batch were known, there is no guarantee that all of the other runs will use anything like as much. These matters combine to make agent-based modellers ‘antisocial’ users of HPC clusters where the ‘performance’ of the clusters’ users is measured by their ability to accurately predict resource requirements, or there isn’t an ‘accommodating’ relationship between the administrator and researcher. Further, the social environment in which researchers access these resources put early-career and female researchers at a potential systemic disadvantage

The main purpose of making these points is to lay down the foundations for more equitable access to HPC for social scientists, and provide tentative users of these facilities with the arguments they need to develop constructive working arrangements with cluster administrators for them to run their agent-based models on shared HPC equipment.

Acknowledgements

This work was supported by the Scottish Government Rural and Environment Science and Analytical Services Division (project reference JHI-C5-1)

References

Andersson, A., Hagerup, T., Nilsson, S. and Raman, R. (1998) Sorting in linear time? Journal of Computer and System Sciences 57, 74-93. https://doi.org/10.1006/jcss.1998.1580

Blumenthal, R. (2021) Walking the curricular talk: a longitudinal study of computer science departmental course requirements. In Lu, B. and Smallwood, P. (eds.) The Journal of Computing Sciences in Colleges: Papers of the 30th Annual CCSC Rocky Mountain Conference, October 15th-16th, 2021, Utah Valley University (virtual), Orem, UT. Volume 37, Number 2, pp. 40-50.

Fire, M. and Guestrin, C. (2019) Over-optimization of academic publishing metrics: observing Goodhart’s Law in action. GigaScience 8 (6), giz053. https://doi.org/10.1093/gigascience/giz053

Gotts, N. M. and Polhill, J. G. (2010) Size matters: large-scale replications of experiments with FEARLUS. Advances in Complex Systems 13 (4), 453-467. https://doi.org/10.1142/S0219525910002670

Griesemer, J. (2020) Taking Goodhart’s Law meta: gaming, meta-gaming, and hacking academic performance metrics. In Kippmann, A. and Biagioli, M. (eds.) Gaming the Metrics: Misconduct and Manipulation in Academic Research. Cambridge, MA, USA: The MIT Press, pp. 77-87.

Grimm, V., Berger, U., Bastiansen, F., Eliassen, S., Ginot, V., Giske, J., Goss-Custard, J., Grand, T., Heinz, S. K., Huse, G., Huth, A., Jepsen, J. U., Jørgensen, C., Mooij, W. M., Müller, B., Pe’er, G., Piou, C., Railsback, S. F., Robbins, A. M., Robbins, M. M., Rossmanith, E., Rüger, N., Strand, E., Souissi, S., Stillman, R. A., Vabø, R., Visser, U. and DeAngelis, D. L. (2006) A standard protocol for describing individual-based and agent-based models. Ecological Modelling 198, 115-126. https://doi.org/10.1016/j.ecolmodel.2006.04.023

(The) Joint Task Force on Computing Curricula, Association for Computing Machinery (ACM) IEEE Computer Society (2013) Computer Science Curricula 2013: Curriculum Guidelines for Undergraduate Degree Programs in Computer Science. https://doi.org/10.1145/2534860

Kolsaker, A. (2008) Academic professionalism in the managerialist era: a study of English universities. Studies in Higher Education 33 (5), 513-525. https://doi.org/10.1080/03075070802372885

Polhill, J. G., Hare, M., Bauermann, T., Anzola, D., Palmer, E., Salt, D. and Antosz, P. (2021) Using agent-based models for prediction in complex and wicked systems. Journal of Artificial Societies and Social Simulation 24 (3), 2. https://doi.org/10.18564/jasss.4597

Rice, H. G. (1953) Classes of recursively enumerable sets and their decision problems. Transactions of the American Mathematical Society 74, 358-366. https://doi.org/10.1090/S0002-9947-1953-0053041-6

Steinþórsdóttir, F. S., Brorsen Smidt, T., Pétursdóttir, G. M., Einarsdóttir, Þ, and Le Feuvre, N. (2019) New managerialism in the academy: gender bias and precarity. Gender, Work & Organization 26 (2), 124-139. https://doi.org/10.1111/gwao.12286

Sun, Z., Lorscheid, I., Millington, J. D., Lauf, S., Magliocca, N. R., Groeneveld, J., Balbi, S., Nolzen, H., Müller, B., Schulze, J. and Buchmann, C. M. (2016) Simple or complicated agent-based models? A complicated issue. Environmental Modelling & Software 86, 56-67. https://doi.org/10.1016/j.envsoft.2016.09.006

Turing, A. M. (1937) On computable numbers, with an application to the Entscheidungsproblem. Proceedings of the London Mathematical Society s2-42 (1), 230-265. https://doi.org/10.1112/plms/s2-42.1.230

Yoo, A. B., Jette, M. A. and Grondona, M. (2003) SLURM: Simple Linux utility for resource management. In Feitelson, D., Rudolph, L. and Schwiegelshohn, U. (eds.) Job Scheduling Strategies for Parallel Processing. 9th International Workshop, JSSPP 2003, Seattle, WA, USA, June 2003, Revised Papers. Lecture Notes in Computer Science 2862, pp. 44-60. Berlin, Germany: Springer. https://doi.org/10.1007/10968987_3


Polhill, G. (2022) Antisocial simulation: using shared high-performance computing clusters to run agent-based models. Review of Artificial Societies and Social Simulation, 14 Dec 2022. https://rofasss.org/2022/12/14/antisoc-sim


© The authors under the Creative Commons’ Attribution-NoDerivs (CC BY-ND) Licence (v4.0)

Predicting Social Systems – a Challenge

By Bruce Edmonds, Gary Polhill and David Hales

(Part of the Prediction-Thread)

There is a lot of pressure on social scientists to predict. Not only is an ability to predict implicit in all requests to assess or optimise policy options before they are tried, but prediction is also the “gold standard” of science. However, there is a debate among modellers of complex social systems about whether this is possible to any meaningful extent. In this context, the aim of this paper is to issue the following challenge:

Are there any documented examples of models that predict useful aspects of complex social systems?

To do this the paper will:

  1. define prediction in a way that corresponds to what a wider audience might expect of it
  2. give some illustrative examples of prediction and non-prediction
  3. request examples where the successful prediction of social systems is claimed
  4. and outline the aspects on which these examples will be analysed

About Prediction

We start by defining prediction, taken from (Edmonds et al. 2019). This is a pragmatic definition designed to encapsulate common sense usage – what a wider public (e.g. policy makers or grant givers) might reasonably expect from “a prediction”.

By ‘prediction’, we mean the ability to reliably anticipate well-defined aspects of data that is not currently known to a useful degree of accuracy via computations using the model.

Let us clarify the language in this.

  • It has to be reliable. That is, one can rely upon its prediction as one makes this – a model that predicts erratically and only occasionally predicts is no help, since one does not whether to believe any particular prediction. This usually means that (a) it has made successful predictions for several independent cases and (b) the conditions under which it works is (roughly) known.
  • What is predicted has to be unknown at the time of prediction. That is, the prediction has to be made before the prediction is verified. Predicting known data (as when a model is checked on out-of-sample data) is not sufficient [1]. Nor is the practice of looking for phenomena that is consistent with the results of a model, after they have been generated (due to ignoring all the phenomena that is not consistent with the model in this process).
  • What is being predicted is well defined. That is, How to use the model to make a prediction about observed data is clear. An abstract model that is very suggestive – appears to predict phenomena but in a vague and undefined manner but where one has to invent the mapping between model and data to make this work – may be useful as a way of thinking about phenomena, but this is different from empirical prediction.
  • Which aspects of data about being predicted is open. As Watts (2014) points out, this is not restricted to point numerical predictions of some measurable value but could be a wider pattern. Examples of this include: a probabilistic prediction, a range of values, a negative prediction (this will not happen), or a second-order characteristic (such as the shape of a distribution or a correlation between variables). What is important is that (a) this is a useful characteristic to predict and (b) that this can be checked by an independent actor. Thus, for example, when predicting a value, the accuracy of that prediction depends on its use.
  • The prediction has to use the model in an essential manner. Claiming to predict something obviously inevitable which does not use the model is insufficient – the model has to distinguish which of the possible outcomes is being predicted at the time.

Thus, prediction is different from other kinds of scientific/empirical uses, such as description and explanation (Edmonds et al. 2019). Some modellers use “prediction” to mean any output from a model, regardless of its relationship to any observation of what is being modelled [2]. Others use “prediction” for any empirical fitting of data, regardless of whether that data is known before hand. However here we wish to be clearer and avoid any “post-truth” softening of the meaning of the word for two reasons (a) distinguishing different kinds of model use is crucial in matters of model checking or validation and (b) these “softer” kinds of empirical purpose will simply confuse the wider public when if talk to themabout “prediction”. One suspects that modellers have accepted these other meanings because it then allows them to claim they can predict (Edmonds 2017).

Some Examples

Nate Silver and his team aim to predict future social phenomena, such as the results of elections and the outcome of sports competitions. He correctly predicted the outcomes of all 50 electoral colleges in Obama’s election before it happened. This is a data-hungry approach, which involves the long-term development of simulations that carefully see what can be inferred from the available data, with repeated trial and error. The forecasts are probabilistic and repeated many times. As well as making predictions, his unit tries to establish the level of uncertainty in those predictions – being honest about the probability of those predictions coming about given the likely levels of error and bias in the data. These models are not agent-based in nature but tend to be of a mostly statistical nature, thus it is debatable whether these are treated as complex systems – it certainly does not use any theory from complexity science. His book (Silver 2012) describes his approach. Post hoc analysis of predictions – explaining why it worked or not – is kept distinct from the predictive models themselves – this analysis may inform changes to the predictive model but is not then incorporated into the model. The analysis is thus kept independent of the predictive model so it can be an effective check.

Many models in economics and ecology claim to “predict” but on inspection, this only means there is a fit to some empirical data. For example, (Meese & Rogoff 1983) looked at 40 econometric models where they claimed they were predicting some time-series. However, 37 out of 40 models failed completely when tested on newly available data from the same time series that they claimed to predict. Clearly, although presented as being predictive models, they could not predict unknown data. Although we do not know for sure, presumably what happened was that these models had been (explicitly or implicitly) fitted to the out-of-sample data, because the out-of-sample data was already known to the modeller. That is, if the model failed to fit the out-of-sample data when the model was tested, it was then adjusted until it did work, or alternatively, only those models that fitted the out-of-sample data were published.

The Challenge

The challenge is envisioned as happening like this.

  1. We publicise this paper requesting that people send us example of prediction or near-prediction on complex social systems with pointers to the appropriate documentation.
  2. We collect these and analyse them according to the characteristics and questions described below.
  3. We will post some interim results in January 2020 [3], in order to prompt more examples and to stimulate discussion. The final deadline for examples is the end of March 2020.
  4. We will publish the list of all the examples sent to us on the web, and present our summary and conclusions at Social Simulation 2020 in Milan and have a discussion there about the nature and prospects for the prediction of complex social systems. Anyone who contributed an example will be invited to be a co-author if they wish to be so-named.

How suggestions will be judged

For each suggestion, a number of answers will be sought – namely to the following questions:

  • What are the papers or documents that describe the model?
  • Is there an explicit claim that the model can predict (as opposed to might in the future)?
  • What kind of characteristics are being predicted (number, probabilistic, range…)?
  • Is there evidence of a prediction being made before the prediction was verified?
  • Is there evidence of the model being used for a series of independent predictions?
  • Were any of the predictions verified by a team that is independent of the one that made the prediction?
  • Is there evidence of the same team or similar models making failed predictions?
  • To what extent did the model need extensive calibration/adjustment before the prediction?
  • What role does theory play (if any) in the model?
  • Are the conditions under which predictive ability claimed described?

Of course, negative answers to any of the above about a particular model does not mean that the model cannot predict. What we are assessing is the evidence that a model can predict something meaningful about complex social systems. (Silver 2012) describes the method by which they attempt prediction, but this method might be different from that described in most theory-based academic papers.

Possible Outcomes

This exercise might shed some light of some interesting questions, such as:

  • What kind of prediction of complex social systems has been attempted?
  • Are there any examples where the reliable prediction of complex social systems has been achieved?
  • Are there certain kinds of social phenomena which seem to more amenable to prediction than others?
  • Does aiming to predict with a model entail any difference in method than projects with other aims?
  • Are there any commonalities among the projects that achieve reliable prediction?
  • Is there anything we could (collectively) do that would encourage or document good prediction?

It might well be that whether prediction is achievable might depend on exactly what is meant by the word.

Acknowledgements

This paper resulted from a “lively discussion” after Gary’s (Polhill et al. 2019) talk about prediction at the Social Simulation conference in Mainz. Many thanks to all those who joined in this. Of course, prior to this we have had many discussions about prediction. These have included Gary’s previous attempt at a prediction competition (Polhill 2018) and Scott Moss’s arguments about prediction in economics (which has many parallels with the debate here).

Notes

[1] This is sufficient for other empirical purposes, such as explanation (Edmonds et al. 2019)

[2] Confusingly they sometimes the word “forecasting” for what we mean by predict here.

[3] Assuming we have any submitted examples to talk about

References

Edmonds, B. & Adoha, L. (2019) Using agent-based simulation to inform policy – what could possibly go wrong? In Davidson, P. & Verhargen, H. (Eds.) (2019). Multi-Agent-Based Simulation XIX, 19th International Workshop, MABS 2018, Stockholm, Sweden, July 14, 2018, Revised Selected Papers. Lecture Notes in AI, 11463, Springer, pp. 1-16. DOI: 10.1007/978-3-030-22270-3_1 (see also http://cfpm.org/discussionpapers/236)

Edmonds, B. (2017) The post-truth drift in social simulation. Social Simulation Conference (SSC2017), Dublin, Ireland. (http://cfpm.org/discussionpapers/195)

Edmonds, B., le Page, C., Bithell, M., Chattoe-Brown, E., Grimm, V., Meyer, R., Montañola-Sales, C., Ormerod, P., Root H. & Squazzoni. F. (2019) Different Modelling Purposes. Journal of Artificial Societies and Social Simulation, 22(3):6. http://jasss.soc.surrey.ac.uk/22/3/6.html.

Grimm V, Revilla E, Berger U, Jeltsch F, Mooij WM, Railsback SF, Thulke H-H, Weiner J, Wiegand T, DeAngelis DL (2005) Pattern-oriented modeling of agent-based complex systems: lessons from ecology. Science 310: 987-991.

Meese, R.A. & Rogoff, K. (1983) Empirical Exchange Rate models of the Seventies – do they fit out of sample? Journal of International Economics, 14:3-24.

Polhill, G. (2018) Why the social simulation community should tackle prediction, Review of Artificial Societies and Social Simulation, 6th August 2018. https://rofasss.org/2018/08/06/gp/

Polhill, G., Hare, H., Anzola, D., Bauermann, T., French, T., Post, H. and Salt, D. (2019) Using ABMs for prediction: Two thought experiments and a workshop. Social Simulation 2019, Mainz.

Silver, N. (2012). The signal and the noise: the art and science of prediction. Penguin UK.

Thorngate, W. & Edmonds, B. (2013) Measuring simulation-observation fit: An introduction to ordinal pattern analysis. Journal of Artificial Societies and Social Simulation, 16(2):14. http://jasss.soc.surrey.ac.uk/16/2/4.html

Watts, D. J. (2014). Common Sense and Sociological Explanations. American Journal of Sociology, 120(2), 313-351.


Edmonds, B., Polhill, G and Hales, D. (2019) Predicting Social Systems – a Challenge. Review of Artificial Societies and Social Simulation, 4th June 2019. https://rofasss.org/2018/11/04/predicting-social-systems-a-challenge


© The authors under the Creative Commons’ Attribution-NoDerivs (CC BY-ND) Licence (v4.0)

Why the social simulation community should tackle prediction

By Gary Polhill

(Part of the Prediction-Thread)

On 4 May 2002, Scott Moss (2002) reported in the Proceedings of the National Academy of Sciences of the United States of America that he had recently approached the e-mail discussion list of the International Institute of Forecasters to ask whether anyone had an example of a correct econometric forecast of an extreme event. None of the respondents were able to provide a satisfactory answer.

As reported by Hassan et al. (2013), on 28 April 2009, Scott Moss asked a similar question of the members of the SIMSOC mailing list: “Does anyone know of a correct, real-time, model-based policy-impact forecast?” [1] No-one responded with such an example, and Hassan et al. note that the ensuing discussion questioned why we are bothering with agent-based models (ABMs). Papers such as Epstein’s (2008) suggest this is not an uncommon conversation.

On 23 March 2018, I wrote an email [2] to the SIMSOC mailing list asking for expressions of interest in a prediction competition to be held at the Social Simulation Conference in Stockholm in 2018. I received two such expressions, and consequently announced on 10 May 2018 that the competition would go ahead. [3] By 22 May 2018, however, one of the two had pulled out because of lack of data, and I contacted the list to say the competition would be replaced with a workshop. [4]

Why the problem with prediction? As Edmonds (2017), discussing different modelling purposes, says, prediction is extremely challenging in the type of complex social system in which an agent-based model would justifiably be applied. He doesn’t go as far as stating that prediction is impossible; but with Aodha (2017, p. 819) he says, in the final chapter of the same book, that modellers should “stop using the word predict” and policymakers should “stop expecting the word predict”. At a minimum, this suggests a strong aversion to prediction within the social simulation community.

Nagel (1979) gives attention to why prediction is hard in the social sciences. Not least amongst the reasons offered is the fact that social systems may adapt according to predictions made – whether those predictions are right or wrong. Nagel gives two examples of this: suicidal predictions are those in which a predicted event does not happen because steps are taken to avert the predicted event; self-fulfilling prophecies are events that occur largely because they have been predicted, but arguably would not have occurred otherwise.

The advent of empirical ABM, as hailed by Janssen and Ostrom’s (2006) editorial introduction to a special issue of Ecology and Society on the subject, naturally raises the question of using ABMs to make predictions, at least insofar as “predict” in this context means using an ABM to generate new knowledge about the empirical world that can be tested by observing it. There are various reasons why developing ABMs with the purpose of prediction is a goal worth pursuing. Three of them are:

  • Developing predictions, Edmonds (2017) notes, is an iterative process, requiring testing and adapting a model against various data. Engaging with such a process with ABMs offers vital opportunities to learn and develop methodology, not least on the collection and use of data in ABMs, but also in areas such as model design, calibration, validation and sensitivity analysis. We should expect, or at least be prepared for, our predictions to fail often. Then, the value is in what we learn from these failures, both about the systems we are modelling, and about the approach taken.
  • There is undeniably a demand for predictions in complex social systems. That demand will not go away just because a small group of people claim that prediction is impossible. A key question is how we want that demand to be met. Presumably at least some of the people engaged in empirical ABM have chosen an agent-based approach over simpler, more established alternatives because they believe ABMs to be sufficiently better to be worth the extra effort of their development. We don’t know whether ABMs can be better at prediction, but such knowledge would at least be useful.
  • Edmonds (2017) says that predictions should be reliable and useful. Reliability pertains both to having a reasonable comprehension of the conditions of application of the model, and to the predictions being consistently right when the conditions apply. Usefulness means that the knowledge the prediction supplies is of value with respect to its accuracy. For example, a weather forecast stating that tomorrow the mean temperature on the Earth’s surface will be between –100 and +100 Celsius is not especially useful (at least to its inhabitants). However, a more general point is that we are accustomed to predictions being phrased in particular ways because of the methods used to generate them. Attempting prediction using ABM may lead to a situation in which we develop different language around prediction, which in turn could have added benefits: (a) gaining a better understanding of what ABM offers that other approaches do not; (b) managing the expectations of those who demand predictions regarding what predictions should look like.

Prediction is not the only reason to engage in a modelling exercise. However, in future if the social simulation community is asked for an example of a correct prediction of an ABM, it would be desirable to be able to point to a body of research and methodology that has been developed as a result of trying to achieve this aim, and ideally to be able to supply a number of examples of success. This would be better than a fraught conversation about the point of modelling, and consequent attempts to divert attention to all of the other reasons to build an ABM that aren’t to do with prediction. To this end, it would be good if the social simulation community embraced the challenge, and provided a supportive environment to those with the courage to take it on.

Notes

  1. https://www.jiscmail.ac.uk/cgi-bin/webadmin?A2=simsoc;fb704db4.0904 (Cited in Hassan et al. (2013))
  2. https://www.jiscmail.ac.uk/cgi-bin/webadmin?A2=simsoc;14ecabbf.1803
  3. https://www.jiscmail.ac.uk/cgi-bin/webadmin?A2=SIMSOC;1802c445.1805
  4. https://www.jiscmail.ac.uk/cgi-bin/webadmin?A2=simsoc;ffe62b05.1805

References

Aodha, L. n. and Edmonds, B. (2017) Some pitfalls to beware when applying models to issues of policy relevance. In Edmonds, B. and Meyer, R. (eds.) Simulating Social Complexity. Second Edition. Springer. pp. 801-822.

Edmonds, B. (2017) Different modelling purposes. In Edmonds, B. and Meyer, R. (eds.) Simulating Social Complexity. Second Edition. Springer. pp. 39-58.

Epstein, J. (2008) Why model? Journal of Artificial Societies and Social Simulation 11 (4), 12. http://jasss.soc.surrey.ac.uk/11/4/12.html

Hassan, S., Arroyo, J., Galán, J. M., Antunes, L. and Pavón, J. (2013) Asking the oracle: introducing forecasting principles into agent-based modelling. Journal of Artificial Societies and Social Simulation 16 (3), 13. http://jasss.soc.surrey.ac.uk/16/3/13.html

Janssen, M. A. and Ostrom, E. (2006) Empirically based, agent-based models. Ecology and Society 11 (2), 37. http://www.ecologyandsociety.org/vol11/iss2/art37/

Moss, S. (2002) Policy analysis from first principles. Proceedings of the National Academy of Sciences of the United States of America 99 (suppl. 3), 7267-7274. http://doi.org/10.1073/pnas.092080699

Nagel, E. (1979) The Structure of Science: Problems in the Logic of Scientific Explanation. Hackett Publishing Company.


Polhill, G. (2018) Why the social simulation community should tackle prediction, Review of Artificial Societies and Social Simulation, 6th August 2018. https://rofasss.org/2018/08/06/gp/


© The authors under the Creative Commons’ Attribution-NoDerivs (CC BY-ND) Licence (v4.0)