By Bruce Edmonds
(A contribution to the: JASSS-Covid19-Thread)
It is natural to want to help in a crisis (Squazzoni et al. 2020), but it is important to do something that is actually useful rather than just ‘adding to the noise’. Usefully modelling disease spread within complex societies is not easy to do – which essentially means there are two options:
- Model it in a fairly abstract manner to explore ideas and mechanisms, but without the empirical grounding and validation needed to reliably support policy making.
- Model it in an empirically testable manner with a view to answering some specific questions and possibly inform policy in a useful manner.
Which one does depends on the modelling purpose one has in mind (Edmonds et al. 2019). Both routes are legitimate as long as one is clear as to what it can and cannot do. The dangers come when there is confusion – taking the first route whilst giving policy actors the impression one is doing the second risks deceiving people and giving false confidence (Edmonds & Adoha 2019, Elsenbroich & Badham 2020). Here I am only discussing the second, empirically ambitious route.
Some of the questions that policy-makers might want to ask, include, what might happen if we: close the urban parks, allow children of a specific range of ages go to school one day a week, cancel 75% of the intercity trains, allow people to go to beauty spots, visit sick relatives in hospital or test people as they recover and give them a certificate to allow them to go back to work?
To understand what might happen in these scenarios would require an agent-based model where agents made the kind of mundane, every-day decisions of where to go and who to meet, such that the patterns and outputs of the model were consistent with known data (possibly following the ‘Pattern-Oriented Modelling’ of Grimm & Railsback 2012). This is currently lacking. However this would require:
- A long-term, iterative development (Bithell 2018), with many cycles of model development followed by empirical comparison and data collection. This means that this kind of model might be more useful for the next epidemic rather than the current one.
- A collective approach rather than one based on individual modellers. In any very complex model it is impossible to understand it all – there are bound to be small errors and programmed mechanisms will subtly interaction with others. As (Siebers & Venkatesan 2020) pointed out this means collaborating with people from other disciplines (which always takes time to make work), but it also means an open approach where lots of modellers routinely inspect, replicate, pull apart, critique and play with other modellers’ work – without anyone getting upset or feeling criticised. This does involve an institutional and normative embedding of good modelling practice (as discussed in Squazzoni et al. 2020) but also requires a change in attitude – from individual to collective achievement.
Both are necessary if we are to build the modelling infrastructure that may allow us to model policy options for the next epidemic. We will need to start now if we are to be ready because it will not be easy.
References
Bithell, M. (2018) Continuous model development: a plea for persistent virtual worlds, Review of Artificial Societies and Social Simulation, 22nd August 2018. https://rofasss.org/2018/08/22/mb
Edmonds, B. & Adoha, L. (2019) Using agent-based simulation to inform policy – what could possibly go wrong? In Davidson, P. & Verhargen, H. (Eds.) (2019). Multi-Agent-Based Simulation XIX, 19th International Workshop, MABS 2018, Stockholm, Sweden, July 14, 2018, Revised Selected Papers. Lecture Notes in AI, 11463, Springer, pp. 1-16. DOI: 10.1007/978-3-030-22270-3_1
Edmonds, B., Le Page, C., Bithell, M., Chattoe-Brown, E., Grimm, V., Meyer, R., Montañola-Sales, C., Ormerod, P., Root, H., & Squazzoni, F. (2019). Different Modelling Purposes. Journal of Artificial Societies and Social Simulation, 22(3), 6. <http://jasss.soc.surrey.ac.uk/22/3/6.html> doi: 10.18564/jasss.3993
Elsenbroich, C. and Badham, J. (2020) Focussing on our Strengths. Review of Artificial Societies and Social Simulation, 12th April 2020. https://rofasss.org/2020/04/12/focussing-on-our-strengths/
Siebers, P-O. and Venkatesan, S. (2020) Get out of your silos and work together. Review of Artificial Societies and Social Simulation, 8th April 2020. https://rofasss.org/2020/0408/get-out-of-your-silos
Squazzoni, F., Polhill, J. G., Edmonds, B., Ahrweiler, P., Antosz, P., Scholz, G., Chappin, É., Borit, M., Verhagen, H., Giardini, F. and Gilbert, N. (2020) Computational Models That Matter During a Global Pandemic Outbreak: A Call to Action. Journal of Artificial Societies and Social Simulation, 23(2):10. <http://jasss.soc.surrey.ac.uk/23/2/10.html>. doi: 10.18564/jasss.4298
Edmonds, B. (2020) Good Modelling Takes a Lot of Time and Many Eyes. Review of Artificial Societies and Social Simulation, 13th April 2020. https://rofasss.org/2020/04/13/a-lot-of-time-and-many-eyes/
© The authors under the Creative Commons’ Attribution-NoDerivs (CC BY-ND) Licence (v4.0)